Open Access
Issue
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 04015
Number of page(s) 8
Section Nearly Zero Energy Buildings and Smart Energy community (Micro to Macro-scale)
DOI https://doi.org/10.1051/e3sconf/202339604015
Published online 16 June 2023
  1. H. Verkerk et al., Forest products in the global bioeconomy: Enabling substitution by wood-based products and contributing to the Sustainable Development Goals. Food & Agriculture Org., 2021. doi: 10.4060/cb7274en. [Google Scholar]
  2. “Increased carbon footprint of materials production driven by rise in.pdf.” Accessed: Dec. 19, 2022. [Online]. Available: https://www.nature.com/articles/s41561-021-00690-8.pdf [Google Scholar]
  3. R. Azari and N. Abbasabadi, “Embodied energy of buildings: A review of data, methods, challenges, and research trends,” Energy Build., vol. 168, pp. 225–235, Jun. 2018, doi: 10.1016/j.enbuild.2018.03.003. [CrossRef] [Google Scholar]
  4. Y. G. Yohanis and B. Norton, “Life-cycle operational and embodied energy for a generic single-storey office building in the UK,” Energy, vol. 27, no. 1, pp. 77–92, Jan. 2002, doi: 10.1016/S0360-5442(01)00061-5. [CrossRef] [Google Scholar]
  5. L. Rincón, A. Castell, G. Pérez, C. Solé, D. Boer, and L. F. Cabeza, “Evaluation of the environmental impact of experimental buildings with different constructive systems using Material Flow Analysis and Life Cycle Assessment,” Appl. Energy, vol. 109, pp. 544–552, Sep. 2013, doi: 10.1016/j.apenergy.2013.02.038. [CrossRef] [Google Scholar]
  6. R. Crawford, Life cycle assessment in the built environment. London ; New York: Spon Press, 2011. [CrossRef] [Google Scholar]
  7. P. Leskinen et al., Substitution effects of wood-based products in climate change mitigation. Joensuu: EFI, 2018. [CrossRef] [Google Scholar]
  8. R. Sathre and J. O’Connor, “Meta-analysis of greenhouse gas displacement factors of wood product substitution,” Environ. Sci. Policy, vol. 13, no. 2, pp. 104–114, Apr. 2010, doi: 10.1016/j.envsci.2009.12.005. [CrossRef] [Google Scholar]
  9. P. Leturcq, “GHG displacement factors of harvested wood products: the myth of substitution,” Sci. Rep., vol. 10, no. 1, Art. no. 1, Nov. 2020, doi: 10.1038/s41598-020-77527-8. [CrossRef] [Google Scholar]
  10. M. Sandanayake, W. Lokuge, G. Zhang, S. Setunge, and Q. Thushar, “Greenhouse gas emissions during timber and concrete building construction —A scenario based comparative case study,” Sustain. Cities Soc., vol. 38, pp. 91–97, Apr. 2018, doi: 10.1016/j.scs.2017.12.017. [CrossRef] [Google Scholar]
  11. T. Myllyviita, S. Soimakallio, J. Judl, and J. Seppälä, “Wood substitution potential in greenhouse gas emission reduction–review on current state and application of displacement factors,” For. Ecosyst., vol. 8, no. 1, p. 42, Jun. 2021, doi: 10.1186/s40663-021-00326-8. [CrossRef] [Google Scholar]
  12. Gubernur daerah khusus Ibukota Jakarta, Standar satuan harga, hargasatuan pokok kegiatan dan analisis standar biaya pada aplikasi Smart Planning Budgeting dalam penyusunan anggaran pendapatan dan belanja daerah tahun anggaran 2022. 2021. [Google Scholar]
  13. F. Pacheco-Torgal, L. F. Cabeza, J. Labrincha, and A. G. de Magalhaes, Eco-efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. Woodhead Publishing, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.