Open Access
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 04016
Number of page(s) 8
Section Nearly Zero Energy Buildings and Smart Energy community (Micro to Macro-scale)
Published online 16 June 2023
  1. M. González-Torres, L. Pérez-Lombard, J. F. Coronel, I. R. Maestre, and D. Yan, “A review on buildings energy information: Trends, end-uses, fuels and drivers,” Energy Reports, vol. 8, pp. 626–637, (Nov. 2022), doi: 10.1016/J.EGYR.2021.11.280. [CrossRef] [Google Scholar]
  2. “2021 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector,” Nairobi, (2021). [Google Scholar]
  3. J. W. Lee, H. J. Jung, J. Y. Park, J. B. Lee, and Y. Yoon, “Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements,” Renew Energy, vol. 50, pp. 522–531, (Feb. 2013), doi: 10.1016/J.RENENE.2012.07.029. [CrossRef] [Google Scholar]
  4. M. Santamouris and K. Vasilakopoulou, “Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 1, p. 100002, (2021), doi: [Google Scholar]
  5. Y. Song, H. Zhang, and N. Mithraratne, “Research on influences of wall design on embodied and operating energy consumption: A case study of temporary building in China,” Energy Build, vol. 278, p. 112628, (2023), doi: [CrossRef] [Google Scholar]
  6. J. L. Reyna and M. v Chester, “Energy efficiency to reduce residential electricity and natural gas use under climate change,” Nat Commun, vol. 8, no. 1, p. 14916, (2017), doi: 10.1038/ncomms14916. [CrossRef] [PubMed] [Google Scholar]
  7. S. Z. Shahraki, A. Hosseini, D. Sauri, and F. Hussaini, “Fringe more than context: Perceived quality of life in informal settlements in a developing country: The case of Kabul, Afghanistan,” Sustain Cities Soc, vol. 63, p. 102494, (Dec. 2020), doi: 10.1016/J.SCS.2020.102494. [CrossRef] [Google Scholar]
  8. G. A. Niazi and N. Painting, “Significant Factors Causing Cost Overruns in the Construction Industry in Afghanistan,” Procedia Eng, vol. 182, pp. 510–517, (Jan. 2017), doi: 10.1016/J.PROENG.2017.03.145. [CrossRef] [Google Scholar]
  9. “World Population Review.” [Google Scholar]
  10. H. Nazire, M. Kita, S. A. Okyere, and S. Matsubara, “Effects of Informal Settlement Upgrading in Kabul City, Afghanistan: A Case Study of Afshar Area,” Current Urban Studies, vol. 4, no. 04, pp. 476–494, (2016), doi: 10.4236/cus.2016.44031. [CrossRef] [Google Scholar]
  11. N. R. Sabory, T. Senjyu, M. S. S. Danish, S. Maqbool Sayed, A. Ahmadi, and E. Saeedi, “Post-2000 Building Industry in Kabul City from Sustainability Perspective,” Sustainability, vol. 13, no. 14, p. 7833, (Jul. 2021), doi: 10.3390/su13147833. [CrossRef] [Google Scholar]
  12. R. Rostami, S. M. Khoshnava, H. Lamit, D. Streimikiene, and A. Mardani, “An overview of Afghanistan’s trends toward renewable and sustainable energies,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 1440–1464, (Sep. 2017), doi: 10.1016/J.RSER.2016.11.172. [CrossRef] [Google Scholar]
  13. Farkhod Aminjonov, “Afghanistan’s energy security: Tracing Central Asian countries’ contribution,” Kabul, (2016). [Google Scholar]
  14. “” [Google Scholar]
  15. A. McCoy, Dong Zhao, Yunjeong Mo, P. Agee, and F. Paige, “Latent relationships between construction cost and energy efficiency in multifamily green buildings,” in Energy Generation and Efficiency Technologies for Green Residential Buildings, Institution of Engineering and Technology, (2019), pp. 173–190. doi: 10.1049/PBPO155E_ch8. [CrossRef] [Google Scholar]
  16. C. She, R. Jia, B.-N. Hu, Z.-K. Zheng, Y.-P. Xu, and D. Rodriguez, “Life cycle cost and life cycle energy in zero-energy building by multi-objective optimization,” Energy Reports, vol. 7, pp. 5612–5626, (Nov. 2021), doi: 10.1016/j.egyr.2021.08.198. [CrossRef] [Google Scholar]
  17. A. Badea, T. Baracu, C. Dinca, D. Tutica, R. Grigore, and M. Anastasiu, “A life-cycle cost analysis of the passive house ‘POLITEHNICA’ from Bucharest,” Energy Build, vol. 80, pp. 542–555, (Sep. 2014), doi: 10.1016/J.ENBUILD.2014.04.044. [CrossRef] [Google Scholar]
  18. A. Albatayneh, D. Alterman, A. Page, and B. Moghtaderi, “The Significance of the Orientation on the Overall buildings Thermal Performance-Case Study in Australia,” Energy Procedia, vol. 152, pp. 372–377, (Oct. 2018), doi: 10.1016/J.EGYPRO.2018.09.159. [CrossRef] [Google Scholar]
  19. S. Elhadad, B. Baranyai, and J. Gyergyák, “The impact of building orientation on energy performance: A case study in new Minia, Egypt,” Pollack Periodica, vol. 13, no. 3, pp. 31–40, (Dec. 2018), doi: 10.1556/606.2018.13.3.4. [CrossRef] [Google Scholar]
  20. L. Wei, W. Tian, J. Zuo, Z. Y. Yang, Y. Liu, and S. Yang, “Effects of Building Form on Energy Use for Buildings in Cold Climate Regions,” Procedia Eng, vol. 146, pp. 182–189, (Jan. 2016), doi: 10.1016/J.PROENG.2016.06.370. [CrossRef] [Google Scholar]
  21. T. Catalina, J. Virgone, and V. Iordache, “STUDY ON THE IMPACT OF THE BUILDING FORM ON THE ENERGY CONSUMPTION,” (2011). [Google Scholar]
  22. S. Kim, P. A. Zadeh, S. Staub-French, T. Froese, and B. T. Cavka, “Assessment of the Impact of Window Size, Position and Orientation on Building Energy Load Using BIM,” Procedia Eng, vol. 145, pp. 1424–1431, (Jan. 2016), doi: 10.1016/J.PROENG.2016.04.179. [CrossRef] [Google Scholar]
  23. E. Bostancioğlu and B. Telatar, “Effect of Window Size on Residential Buildings’ Energy Costs,” (2013). [Google Scholar]
  24. S. G. Koç and S. Maçka Kalfa, “The effects of shading devices on office building energy performance in Mediterranean climate regions,” Journal of Building Engineering, vol. 44, p. 102653, (Dec. 2021), doi: 10.1016/J.JOBE.2021.102653. [CrossRef] [Google Scholar]
  25. T. Lindberg, T. Kaasalainen, M. Moisio, A. Mäkinen, M. Hedman, and J. Vinha, “Potential of space zoning for energy efficiency through utilization efficiency,” Advances in Building Energy Research, vol. 14, no. 1, pp. 19–40, (Jan. 2020), doi: 10.1080/17512549.2018.1488619. [CrossRef] [Google Scholar]
  26. A. Brès, F. Judex, P. Wilde, and G. Suter, “Impact of zoning strategies for building performance simulation,” (Nov. 2017). [Google Scholar]
  27. J. W. Lee, H. J. Jung, J. Y. Park, J. B. Lee, and Y. Yoon, “Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements,” Renew Energy, vol. 50, pp. 522–531, (Feb. 2013), doi: 10.1016/j.renene.2012.07.029. [CrossRef] [Google Scholar]
  28. H. Shen and A. Tzempelikos, “Sensitivity analysis on daylighting and energy performance of perimeter offices with automated shading,” Build Environ, vol. 59, pp. 303–314, (Jan. 2013), doi: 10.1016/j.buildenv.2012.08.028. [CrossRef] [Google Scholar]
  29. A. S. Muhaisen and H. R. Dabboor, “Studying the Impact of Orientation, Size, and Glass Material of Windows on Heating and Cooling Energy Demand of the Gaza Strip Buildings,” (2015). [Google Scholar]
  30. F. Goia, “Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential,” Solar Energy, vol. 132, pp. 467–492, (Jul. 2016), doi: 10.1016/J.SOLENER.2016.03.031. [CrossRef] [Google Scholar]
  31. J. Rana, R. Hasan, H. R. Sobuz, and V. W. Y. Tam, “Impact assessment of window to wall ratio on energy consumption of an office building of subtropical monsoon climatic country Bangladesh,” International Journal of Construction Management, vol. 22, no. 13, pp. 2528–2553, (Oct. 2022), doi: 10.1080/15623599.2020.1808561. [CrossRef] [Google Scholar]
  32. G. Feng, D. Chi, X. Xu, B. Dou, Y. Sun, and Y. Fu, “Study on the Influence of Window-wall Ratio on the Energy Consumption of Nearly Zero Energy Buildings,” Procedia Eng, vol. 205, pp. 730–737, (Jan. 2017), doi: 10.1016/J.PROENG.2017.10.003. [CrossRef] [Google Scholar]
  33. Nima Forouzandeh, M. Tahsildoost, and Z. S. Zomorodian, “A review of web-based building energy analysis applications,” J Clean Prod, vol. 306, p. 127251, (Jul. 2021), doi: 10.1016/j.jclepro.2021.127251. [CrossRef] [Google Scholar]
  34. A. Ozaki, T. Watanabe, S. Iwaoka, and S. Takase, “Simulation software to describe the thermal environment of residential buildings based on detailed physical models,” Nov. (2001). [Google Scholar]
  35. A. OZAKI, “Prediction of Hygrothermal Environment of Buildings Based upon Combined Simulation of Heat and Moisture Transfer and Airflow,” The Journal of the International Building Performance Simulation Association, vol. 16, no. 2, pp. 30–37, (2006), [Online]. Available: [Google Scholar]
  36. F. Ghafari, seyedehzahra mirrahimi, and S. Heidari, “Influence of ceiling height on heating energy consumption in educational building,” (Nov. 2018). [Google Scholar]
  37. American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Standard. New York, (2021). [Google Scholar]
  38. K. Naydenov, S. Schiavon, and R. Zecchin, “How much should we ventilate residential buildings?,” Indoor Environmental Quality (IEQ), pp. 18–23, (2009). [Google Scholar]
  39., “Kabul,” Wikimedia Foundation, (Nov. 2022). [Google Scholar]
  40., “Kabul, Afghanistan,” Nov. 2022. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.