Open Access
Issue
E3S Web Conf.
Volume 398, 2023
International Conference on Advances in Agrobusiness and Biotechnology Research (ABR 2023)
Article Number 01037
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202339801037
Published online 22 June 2023
  1. Khachin V.N., Pushin V.G., Kondratiev V.V. Titanium nickelide, structure and properties, Nauka, 1992, 161 p. [Google Scholar]
  2. Shape Memory Alloys: Fundamentals, Modeling and Applications. /Ed. by: V. Brailovski, S. Prokoshkin, P. Terriault and F. Trochu, Montreal, Ecole de technologie superieure (ETS), Universite du Quebec, Canada, 2003, 851 p. [Google Scholar]
  3. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk Nanostructured Materials: Fundamentals and Applications, 2014, John Wiley & Sons, Inc., Hoboken, New Jersey, 456 p. [Google Scholar]
  4. R.Z. Valiev, I.V. Aleksandrov, Bulk nanostructured metallic materials: preparation, structure and properties, Akademkniga, 2007, 398 p. [Google Scholar]
  5. V.G. Pushin, V.V. Stolyarov, D.V. Gunderov, R.Z. Valiev, T.C. Lowe, Y.T. Zhu Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation // Mater. Sci and Eng. A, 2005. [Google Scholar]
  6. D. Gunderov, A. Lukyanov, E. Prokofiev, V. Pushin Mechanical properties of the nanocrystalline Ti49.4Ni50.6 alloy, produced by high pressure torsion Eur. Phys. J., 158, 53–58 (2008). [Google Scholar]
  7. V.V. Stolyarov, E.A. Prokofiev, S.D. Prokoshkin, S.V. Dobatkin, I.B. Trubitsyna, I.Yu. Khmelevskaya, V.G. Pushin, R.Z. Valiev Structural features, mechanical properties and the shape memory effect in TiNi alloys obtained by equal-channel angular pressing, Physics of metals and metallurgy, 2005. V. 100. No. 6. S. 91. [Google Scholar]
  8. Churakova A.A., Gunderov D.V. Transformation of the TiNi Alloy microstructure and the Mechanical Properties Caused by Repeated B2-B19′ Martensitic Transformations // Acta Metallurgica Sinica (English Letters): V. 28, Issue 10, 2015, P. 1230–1237 [CrossRef] [Google Scholar]
  9. Y.X. Tong, B. Guo, F. Chen, B. Tian, L. Li, Y.F. Zheng, Egor A. Prokofiev, Dmitry V. Gunderov Ruslan Z. Valiev Thermal cycling stability of ultrafine-grained TiNi shape memory alloys processed by equal channel angular pressing Scripta Materialia 67 (2012) pp. 1–4. [Google Scholar]
  10. Yintao Song, Xian Chen, Vivekanand Dabade, Thomas W. Shield & Richard D. James Enhanced reversibility and unusual microstructure of a phase-transforming material Nature 2013, V.502, P. 85 [Google Scholar]
  11. Christoph Chluba, Wenwei Ge, Rodrigo Lima de Miranda, Julian Strobel, Lorenz Kienle, Eckhard Quandt, Manfred Wuttig Ultralow-fatigue shape memory alloy films Science, 2015 V.348, Is. 6238 [Google Scholar]
  12. Valiev R.Z., Pushin V.G., Gunderov D.V., Popov A.G. The use of severe deformations to obtain bulk nanocrystalline materials from amorphous alloys // Dokl. RAN. 2004. V. 398. No. 1. S. 54–56. [Google Scholar]
  13. Yunxiang Tong and Yong Liu, Effect of precipitation on two-way shape memory effect of melt-spun Ti50Ni25Cu25 ribbon, Materials Chemistry and Physics 120 (2010) 221–224 [CrossRef] [Google Scholar]
  14. Gunderov D.V., Pushin V.G., Valiev R.Z., Valiev E.Z. Structural and phase transformations in an amorphous rapidly quenched Ti–Ni–Cu alloy subjected to severe plastic deformation and heat treatment // Deformation and destruction of materials. 2006. No. 4. S. 22–25. [Google Scholar]
  15. Zhao L.C., Duerig T.W., Justi S., Melton K.N., Proft J.L., Yu W., et al. The study of niobium-rich precipitations in a NiTiNb shape memory alloy. Scr Met Mater 1990; 24:221–225. [CrossRef] [Google Scholar]
  16. Zhang C.S., Zhao L.C., Duerig T.W., Wayman C.M. Effects of deformation on the transformation hysteresis and shape memory effect in a Ni47Ti44Nb9 alloy. Scr Met Mater 1990; 24:1807–1812. [CrossRef] [Google Scholar]
  17. Zhang C.S., Wang Y.Q., Cai W., Zhao L.C. The study of constitutional phases in a Ni47Ti44Nb9 shape memory alloy. Mater Chem Phys 1991; 28:43–50. [CrossRef] [Google Scholar]
  18. Piao M., Miyazaki S., Otsuka K. Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy. Mater Trans JIM 1992; 33:346–353. [CrossRef] [Google Scholar]
  19. Sui J.H., Gao Z.Y., Li Y.F., Zhang Z.G., Cai W. A study on NiTiNbCo shape memory alloy. Mater Sci Eng A 2009; 508: 33–36. [CrossRef] [Google Scholar]
  20. Chen Y., Jiang H.C., Rong L.J., Xiao L., Zhao X.Q. Mechanical behavior in NiTiNb shape memory alloys with low Nb content. Intermetallics 2011; 19:217–220. [CrossRef] [Google Scholar]
  21. Pushin V.G., Stolyarov V.V., Valiev R.Z., Kourov N.I., Kuranova N.N., Prokofiev E.A., et al. Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation. Ann Chim Sci Mat 2002; 27:77–88. [CrossRef] [Google Scholar]
  22. Pushin V.G., Stolyarov V.V., Valiev R.Z., Lowe T.C., Zhu Y.T. Nanostructured TiNibased shape memory alloys processed by severe plastic deformation. Mater Sci Eng A 2005;410–411:386-389. [Google Scholar]
  23. Prokoshkin S.D., Khmelevskaya I.Yu., Dobatkin S.V., Trubitsyna I.B., Tatyanin E.V., Stolyarov V.V. et al. Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed TieNi based shape memory alloys. Acta Mater 2005; 53:27032714. [CrossRef] [Google Scholar]
  24. Kockar B., Karaman I., Kim J.I., Chumlyakov Y. A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scr Mater 2006; 54:2203–2208. [CrossRef] [Google Scholar]
  25. Kockar B., Karaman I., Kim J.I., Chumlyakov Y.I., Sharp J., Yu C.J.. Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater 2008; 56:3630–3646. [CrossRef] [Google Scholar]
  26. Tong Y.X., Guo B., Chen F., Tian B., Li L., Zheng Y.F. et al. Thermal cycling stability of ultrafine-grained TiNi shape memory alloys processed by equal channel angular pressing. Scr Mater 2012; 67:1–4. [CrossRef] [Google Scholar]
  27. T.N. Ustinskaya, N.D. Tomashov, E.N. Lubnik, Composition, electrochemical and protective properties of anode films based on TiNi intermetallide, Electrochemistry 23(1987) 254–259. [Google Scholar]
  28. Tan, L. Corrosion and wear – corrosion behavior of NiTi modified by plasma source ion implantation/ R. A. Dodd, W.C. Crone// Biomaterials. -2003 (24)-p. 3931–3939. [CrossRef] [Google Scholar]
  29. Okazaki, Y. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Aland V/Y. Okazaki, S. Rao, Y. Yto // Biomaterials. - 1998 (19), p. 1197–1215. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.