Open Access
E3S Web Conf.
Volume 398, 2023
International Conference on Advances in Agrobusiness and Biotechnology Research (ABR 2023)
Article Number 01038
Number of page(s) 9
Published online 22 June 2023
  1. W. Lauterborn and H. Bolle, “Experimental Investigation of Cavitation Bubble Collapse in the Neighborhood of a Solid Boundary,” J. Fluid Mech., Vol. 72, No. 2 (1975), p 391–399. [CrossRef] [Google Scholar]
  2. M.S. Plesset and R.B. Chapman, “Collapse of an Initially Spherical Vapor Cavity in the Neighborhood of a Solid Boundary,” J. Fluid Mech., Vol. 47 (1971), p 283–290. [CrossRef] [Google Scholar]
  3. M. Dular, et al., “Relationship Between Cavitation Structures and Cavitation Damage,” Wear, Vol. 257, No. 11 (2004), p 1176–1184. [Google Scholar]
  4. C.E. Brennen, Cavitation and Bubble Dynamics, Oxford University Press, 1995, Chap. 3, p 80. [Google Scholar]
  5. E.A. Brujan, et al., “Shock Wave Emission from a Cloud of Bubbles,” Soft Matter, Vol. 8, No. 21 (2012), p 5777–5783. https://doi.10.1039/C2SM25379H. [CrossRef] [Google Scholar]
  6. Handbook on the theory of the ship, Edited by Voitkunsky Ya.I., Leningrad, Sudostroenie, 1986 [Google Scholar]
  7. Martynov, N.D., Petrin S.A., Bibik O.Yu., Makhetov A.S. Studies of the intensity of cavitation wear. - Text: direct // Young scientist. — 2017. — № 18 (152). — С. 58–63. [Google Scholar]
  8. Tokarev A.O., Ivanchik S.N., Ivanchik I.S. Analysis of the causes and prevention of accidents of ship equipment parts - Novosibirsk: Publishing house of the Novosibirsk State Academy of Water Transport, 2010. – 250 с. [Google Scholar]
  9. R. Singh, et al., “Cavitation Erosion in Hydraulic Turbine Components and Mitigation by Coatings: Current Status and Future Needs,” J. Mater. Eng. Perform., Vol. 21, No. 7 (2012), p 1539–1551. [CrossRef] [Google Scholar]
  10. Arabyan L.K., Beketov A.I., Golubev N.F., Geltman N.M. Plasma hardening of propellers // River transport. – 1983, № 1, с. 33 – 35. [Google Scholar]
  11. Arabyan L.K., Zasypkin I.M., Kuzmin V.I., Tokarev A.O. Structure of low-carbon steel with a wear-resistant coating after heat treatment with a laminar jet of nitrogen plasma. Izv. SO AN USSR. Series of technical sciences. Issue 2. 1990, с. 99–104. [Google Scholar]
  12. R.K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, P. Sampathkumaran, Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings, Journal of Thermal Spray Technology, 25(6) (2016) 1217–1230. [CrossRef] [Google Scholar]
  13. Q. Wang, Z. Tang, L. Cha, Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings, Journal of Materials Engineering and Performance, 24(6) (2015) 2435–2443. [CrossRef] [Google Scholar]
  14. Victor Kuzmin, Igor Gulyaev, Dmitriy Sergachev, Sergey Vashchenko, Oleg Kovalev, Elena Kornienko, Andrey Tuezov, Boris Palagushkin. Supersonic DC plasma torch for deposition of high-density wear-resistant coatings. MATERIALS TODAY: PROCEEDINGS. Volume 19, Part 5, Pages 2152–2156, Published 2020. [Google Scholar]
  15. Elena Kornienko, Viktor Kuzmin, Vasily Lozhkin, Igor Gulyaev, Alexander Sivkov, Alexander Ivashutenko, Ilyas Rakhmatullin, Dmitry Sergachev, Victoria Bezrukova. Structural features of B4C-Ni-P plasma coatings. Processing of metals (technology • equipment • tools). 2017 № 3(76) с. 42–50. ISSN: 1994-6309 (print) / 2541-819X (online). DOI: 10.17212/1994-6309-2017-3-42-50. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.