Open Access
Issue |
E3S Web Conf.
Volume 398, 2023
International Conference on Advances in Agrobusiness and Biotechnology Research (ABR 2023)
|
|
---|---|---|
Article Number | 01039 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202339801039 | |
Published online | 22 June 2023 |
- C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography. US Patent, No. 4575330 (1986). [Google Scholar]
- R. Singh, V. Singh, Experimental investigations for rapid moulding solution of plastics using polyjet printing. Mater Sci Forum 701. P. 15–20 (2012). [Google Scholar]
- C. Zhu, T.J. Han, E. Duoss, A. Golobic, J. Kuntz, C. Spadaccini, M. Worsley, Highly compressible 3D periodic graphene aerogel microlattices. Nature communications, 6, 6962 (2015). [CrossRef] [PubMed] [Google Scholar]
- D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhou, G.J. Cheng, 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology. V. 26(43):434003 (2015). [CrossRef] [PubMed] [Google Scholar]
- A. Ambrosi, M. Pumera. 3D-printing technologies for electrochemical applications. Chem Soc Rev. 45, P/2740–2755 (2016). [CrossRef] [PubMed] [Google Scholar]
- R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature. 540. P. 371–378 (2016). [CrossRef] [PubMed] [Google Scholar]
- H. He, M. Akbari, L. Sydänheimo, L. Ukkonen, J. Virkki, 3D printed graphene antennas and interconnections for textile RFID tags: fabrication and reliability towards humidity. Int J Antenn Propag. 1–5 (2017) [Google Scholar]
- M. Wei, F. Zhang, W. Wang, P. Alexandridis, C. Zhou, G. Wu, 3D direct writing fabrication of electrodes for electrochemical storage devices. J Power Sources 354. P. 134–147(2017). [CrossRef] [Google Scholar]
- R.M. Hensleigh, H. Cui, J.S. Oakdale, C.Y. Jianchao, P.G. Campbell, E.B. Duoss, C.M. Spadaccini, X. Zheng, M.A. Worsley, Additive manufacturing of complex micro-architected graphene aerogels - Materials Horizons, 5, P. 1035–1041 (2018). [CrossRef] [Google Scholar]
- Z. Qi, Jianchao Ye, Wen Chen, J. Biener, E. Duoss, C. Spadaccini, M. Worsley, C. Zhu, 3D‐Printed, Superelastic Polypyrrole–Graphene Electrodes with Ultrahigh Areal Capacitance for Electrochemical Energy Storage. Advanced Materials Technologies. 3 (2018) [Google Scholar]
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geimm Raman spectrum of graphene and graphene layers. Phys Rev Lett. 97(18).187401 (2006). [CrossRef] [PubMed] [Google Scholar]
- A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (1–2), P. 47–57 (2007). [CrossRef] [Google Scholar]
- M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys. 9(11), P. 1276–1291 (2007). [CrossRef] [PubMed] [Google Scholar]
- L.G. Cançado, A. Reina, J. Kong, M. Dresselhaus, Geometrical approach for the study of G′ band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite, Physical Review B. 77 (24), 245408 (2008). [CrossRef] [Google Scholar]
- M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3). P. 751–758 (2010). [CrossRef] [PubMed] [Google Scholar]
- L.G. Cançado, A. Jorio, E.H. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8) ), P. 3190–3196 (2011). [CrossRef] [PubMed] [Google Scholar]
- I. Childres, L.A. Jauregui, W. Park, H. Caoa, Y.P. Chena, Raman spectroscopy of graphene and related materials, in: New developments in photon and materials research (2013). [Google Scholar]
- V. Sharma, D. Uy, A. Gangopadhyay, A. O'Neill, W.A. Paxton, A. Sammut, M. Ford, P. Aswath, Structure and chemistry of crankcase and exhaust soot extracted from diesel engines, Carbon 103, P.327–338 (2016). [CrossRef] [Google Scholar]
- J.A. Desai, C. Biswas, A.B. Kaul, Inkjet printing of liquid-exfoliated, highly conducting graphene/poly(3,4 ethylenedioxythiophene):poly(styrenesulfonate) nanosheets for organic electronics. Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, V 35. 03D112 (2017) [CrossRef] [Google Scholar]
- T. Gupta, Graphene. In: Carbon. Springer, Cham. https://doi.org/10.1007/978-3-319-66405-7_7 (2018). [CrossRef] [Google Scholar]
- W. Bodnar, M. Schiorlin, A. Frank, T. Schulz, N. Wöhrl, C. Miron, C. Scheu, J. Kolb, A. Kruth, Synthesis of graphene-related carbon nanoparticles from a liquid isopropanol precursor by a one-step atmospheric plasma process. Applied Surface Science. 514. 145926 (2020). [CrossRef] [Google Scholar]
- https://www.czl.ru/blog/raman-spectroscopy/graphene-raman-analyzer-carbon-nanomaterials-characterization.html [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.