Open Access
Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 04032 | |
Number of page(s) | 11 | |
Section | Computer Science | |
DOI | https://doi.org/10.1051/e3sconf/202339904032 | |
Published online | 12 July 2023 |
- Abhinav, A., & Agrawal, A. (2019). A comprehensive survey of deep learning techniques for image recognition. Journal of Pattern Recognition and Artificial Intelligence, 32(1), 47–63. [Google Scholar]
- Chen, Z., & Gupta, S. (2020). Deep learning for object detection: A comprehensive review. Journal of Visual Communication and Image Representation, 68, 102768. [CrossRef] [Google Scholar]
- Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. 1409.1556. [Google Scholar]
- Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 580–587. [Google Scholar]
- Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards realtime object detection with region proposal networks. Advances in Neural Information Processing Systems, 91–99. [Google Scholar]
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, 779–788. [Google Scholar]
- He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE international conference on computer vision, 2961–2969. [Google Scholar]
- Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. 1804.02767. [Google Scholar]
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition, 2818–2826. [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. [Google Scholar]
- Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, 2117–2125. [Google Scholar]
- Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. Proceedings of the IEEE conference on computer vision and pattern recognition, 7263–7271. [Google Scholar]
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., & Berg, A.C. (2016). [Google Scholar]
- Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. 1804.02767. [Google Scholar]
- Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834–848. [CrossRef] [PubMed] [Google Scholar]
- Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. 1409.1556 2014 [Google Scholar]
- Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. pp. 779–788 [Google Scholar]
- Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014. p. 580–587 [Google Scholar]
- Girshick R. Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. 2015. pp. 1440–1448 [Google Scholar]
- Chorowski J.K., Bahdanau D., Serdyuk D., Cho K., Bengio, Y. Attentionbased models for speech recognition. In: Advances in Neural Information Processing Systems. 2015. pp. 577–585 [Google Scholar]
- Everingham M. et al. The Pascal visual object classes (VOC) challenge. International Journal of Computer Vision. 2010;88(2):303–338 [CrossRef] [Google Scholar]
- Peixoto H.M., Teles R.S., Luiz JVA, Henriques-Alves A.M., Santa Cruz RM. Mice Tracking Using the YOLO Algorithm. Vol. 7. PeerJ Preprints; 2019. p. e27880v1 [Google Scholar]
- Henriques-Alves A.M., Queiroz C.M. Ethological evaluation of the effects of social defeat stress in mice: Beyond the social interaction ratio. Frontiers in Behavioral Neuroscience. 2016;9:364 [CrossRef] [Google Scholar]
- Jhuang H. et al. Automated home-cage behavioural phenotyping of mice. Nature Communications. 2010;1:68 [CrossRef] [Google Scholar]
- Burgos-Artizzu X.P., Dollár P., Lin D., Anderson D.J., Perona P. Social behavior recognition in continuous video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2012. pp. 1322–1329 [CrossRef] [Google Scholar]
- Norouzzadeh M.S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(25):E5716–E5725 [Google Scholar]
- Guo J., He H., He T., Lausen L., Li M., Lin H., et al. GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing. 1907. p. 04433 [Google Scholar]
- Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L. ImageNet: A largescale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE; 2009. pp. 248–255 [CrossRef] [Google Scholar]
- Chen X.-L. et al. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment.;104(2):133–146 [Google Scholar]
- Ren S., He K., Girshick R., Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems. 2015. pp. 91–99. [Google Scholar]
- Chinthamu, N., Gooda, S. K., Venkatachalam, C., Swaminathan, S., & Malathy, G. (2023). IoT- based secure data transmission prediction using deep learning model in cloud computing. International Journal on Recent and Innovation Trends in Computing and Communication, 11, 68–76. doi: 10.17762/ijritcc.v11i4s.6308 [CrossRef] [Google Scholar]
- Ashwin, K. V., Kosuru, V. S. R., Sridhar, S., & Rajesh, P. (2023). A passive islanding detection technique based on susceptible power indices with zero non-detection zone using a hybrid technique. International Journal of Intelligent Systems and Applications in Engineering, 11(2), 635–647. Retrieved from www.scopus.com [Google Scholar]
- Raj, R., & Sahoo, D. S. S.. (2021). Detection of Botnet Using Deep Learning Architecture Using Chrome 23 Pattern with IOT. Research Journal of Computer Systems and Engineering, 2(2), 38:44. Retrieved from https://technicaliournals.org/RJCSE/index.php/iournal/article/view/31 [Google Scholar]
- Kamau, J., Goldberg, R., Oliveira, A., Seo-Joon, C., & Nakamura, E. Improving Recommendation Systems with Collaborative Filtering Algorithms. Kuwait Journal of Machine Learning, 1(3). Retrieved from http://kuwaitjournals.com/index.php/kiml/article/view/134 [Google Scholar]
- Ahammad, D. S. K. H. (2022). Microarray Cancer Classification with Stacked Classifier in Machine Learning Integrated Grid L1-Regulated Feature Selection. Machine Learning Applications in Engineering Education and Management, 2(1), 01–10. Retrieved from http://yashikaiournals.com/index.php/mlaeem/article/view/18 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.