Open Access
Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 04047 | |
Number of page(s) | 8 | |
Section | Computer Science | |
DOI | https://doi.org/10.1051/e3sconf/202339904047 | |
Published online | 12 July 2023 |
- Cooper, K.D., & Simpson, L. (2003). Engineering a simple, efficient register allocator. ACM SIGPLAN Notices, 38(6), 171–180. [Google Scholar]
- Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., & Zadeck, F.K. (1991). Efficiently computing static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems, 13(4), 451–490. [CrossRef] [Google Scholar]
- Briggs, P., Cooper, K.D., & Simpson, L. (1994). Practical improvements to the construction and destruction of static single assignment form. ACM SIGPLAN Notices, 29(6), 85–95. [Google Scholar]
- Allen, F.E., & Kennedy, K. (1983). Optimizing compilers for modern architectures: A dependence-based approach. ACM Transactions on Programming Languages and Systems, 5(2), 220–245. [Google Scholar]
- Bastoul, C. (2004). Code generation in the polyhedral model is easier than you think. Proceedings of the 11th International Conference on Compiler Construction (CC), 722. [Google Scholar]
- Bondhugula, U., Hartono, A., Ramanujam, J., & Sadayappan, P. (2008). A practical automatic polyhedral parallelizer and locality optimizer. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 101–113. [CrossRef] [Google Scholar]
- Allen, F.E., Cocke, J., & Kennedy, K. (1970). An optimal program dependence graph. ACM Transactions on Programming Languages and Systems, 1(1), 110–121. [Google Scholar]
- Steensgaard, B. (1996). Points-to analysis in almost linear time. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 32–41. [Google Scholar]
- Sreedhar, V.C., & Gao, G.R. (1999). A linear time algorithm for placing p-nodes. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 62–73. [Google Scholar]
- Poletto, M., & Sarkar, V. (1999). Linear scan register allocation. ACM Transactions on Programming Languages and Systems, 21(5), 895–913. [CrossRef] [Google Scholar]
- Chowdhury, O.F., Liu, J., & Kong, W. (2009). Fast and effective register allocation for VLIW architectures. ACM Transactions on Architecture and Code Optimization, 6(1), 1–31. [Google Scholar]
- Eichenberger, A.E., Arnold, M.A., & Saphir, W. (2001). Global register allocation at link-time. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 264–274. [Google Scholar]
- Ball, T., & Larus, J.R. (1994). Efficient path profiling. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 46–57. [Google Scholar]
- Calder, B., & Grunwald, D. (1994). Compile-time induction variable substitution. ACM Transactions on Programming Languages and Systems, 16(5), 1491–1508. [Google Scholar]
- Choi, J.D., & Gupta, M. (1993). Loop transformations for vectorizing compilers. ACM Transactions on [Google Scholar]
- Franz, M. (2002). The metaobject protocol and bytecode optimization. ACM Transactions on Programming Languages and Systems, 24(3), 223–280. [Google Scholar]
- Click, C., & Paleczny, M. (2000). Efficiently compiling efficient just-in-time compilers. ACM SIGPLAN Notices, 35(5), 258–269. [Google Scholar]
- Fursin, G., & O'Boyle, M.F. (2009). Milepost GCC: Machine learning enabled selftuning compiler. IEEE Transactions on Computers, 58(2), 131–144. [Google Scholar]
- Arnold, M.A., Fink, S.J., Grove, D., Hind, M., & Snir, M. (2001). Adaptive optimization in the Jalapeno JVM. ACM SIGPLAN Notices, 36(5), 47–57. [Google Scholar]
- Calder, B., & Grunwald, D. (1995). Improving indirect branch prediction through data speculation. ACM Transactions on Computer Systems, 13(4), 337–367. [Google Scholar]
- Li, J., & Wang, Z. (2016). Profile-guided thread-aware optimization for multi-threaded programs. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 49–62. [Google Scholar]
- Bastoul, C., & Cohen, A. (2005). PolyLib: A polyhedral library for high-level loop transformations. International Journal of Parallel Programming, 33(4), 351–373. [CrossRef] [Google Scholar]
- Verdoolaege, S., Groz, R., Cohen, A., & Grosser, T. (2013). The polyhedral model is more widely applicable than you think. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 47–60. [Google Scholar]
- Bastoul, C., & Cohen, A. (2003). List scheduling for throughput optimization of loop nests. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 49–60. [Google Scholar]
- Allen, R., Kennedy, K., Porterfield, A., & Tseng, C.W. (1987). The analysis of parallel programs. ACM Computing Surveys (CSUR), 19(3), 273–341. [Google Scholar]
- Huang, J.R., & Abraham, J.A. (2008). SmartCOM: A demand-driven framework for speculative parallelization. ACM Transactions on Architecture and Code Optimization, 5(4), 1–32. [Google Scholar]
- Tournavitis, G., & Hammond, K. (2012). Bulk-synchronous parallelism in deterministic parallel Java. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 73–82. [Google Scholar]
- Cummins, C., Bailis, P., & Patterson, D.A. (2017). End-to-end deep learning of optimization heuristics. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 571–586. [Google Scholar]
- Mirhoseini, A., Pham, H., Le, Q.V., Steiner, B., Larsen, R., Zhou, Y., … & Srinivasan, P. (2017). Device placement optimization with reinforcement learning. Proceedings of the International Conference on Machine Learning (ICML), 2490–2499. [Google Scholar]
- Zhang, Z., Sun, P., Hwu, W.W., & Chen, D. (2020). MLIR: A compiler infrastructure for the end of Moore's law. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 974–988. [Google Scholar]
- Banerjee, S., Ckakraboity, S., & Mondal, A.C. (2023). Machine learning based crop prediction on region wise weather data. International Journal on Recent and Innovation Trends in Computing and Communication, 11(1), 145–153. doi: 10.17762/ijritcc.v11i1.6084 [CrossRef] [Google Scholar]
- Al-Lami, S.T.Y., & Al-Hamadani, A.A.F. (2023). Systematic review for comparison type of pulse tube refrigerator. International Journal of Intelligent Systems and Applications in Engineering, 11(4s), 625–633. Retrieved from www.scopus.com [Google Scholar]
- Olafur, S., Nieminen, J., Bakker, J., Mayer, M., & Schmid, P. Enhancing Engineering Project Management through Machine Learning Techniques. Kuwait Journal of Machine Learning, 1(1). Retrieved from http://kuwaitjournals.com/index.php/kjml/artide/view/112 [Google Scholar]
- Pande, S.D., & Ahammad, D.S.H. (2021). Improved Clustering-Based Energy Optimization with Routing Protocol in Wireless Sensor Networks. Research Journal of Computer Systems and Engineering, 2(1), 33–39. Retrieved from https://technicaljournals.org/RJ CSE/index.php/journal/article/view/17 [Google Scholar]
- Sharma, M.K. (2021). An Automated Ensemble-Based Classification Model for The Early Diagnosis of The Cancer Using a Machine Learning Approach. Machine Learning Applications in Engineering Education and Management, 1(1), 01–06. Retrieved from http://yashikajournals.com/index.php/mlaeem/article/view/1 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.