Open Access
Issue
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
Article Number 04048
Number of page(s) 10
Section Computer Science
DOI https://doi.org/10.1051/e3sconf/202339904048
Published online 12 July 2023
  1. Sethy PK, Behera SK (2020) Detection of coronavirus disease (covid-19) based on deep features [Google Scholar]
  2. Sethy PK, Behera SK, Ratha PK, Biswas P (2020) Detection of coronavirus disease (covid-19) based on deep features and support vector machine [Google Scholar]
  3. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and patternrecognition, pp 1–9 [Google Scholar]
  4. Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH. Relief-based feature selection: Introduction and review. J Biomed Inform. 2018;85:189–203.doi: [CrossRef] [Google Scholar]
  5. van der Maaten, L., Hinton, G. Visualizing data using t- sne. J Mach Learn Res. 2008;9(86):2579–2605. [GoogleScholar] [Google Scholar]
  6. Wang L, Lin ZQ, Wong A. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Scientific Reports. 2020;10(1):1–12. doi: 10.1038/s41598-019-56847-4. [PMC free article] [PubMed] [CrossRef] [GoogleScholar] [Google Scholar]
  7. Abbas A, Abdelsamea M M, Gaber M M (2020) Classification of covid-19 in chest x-ray images using detrac deep convolutional neural network. arXiv preprint arXiv:2003.13815 [PMC free article] [PubMed] [Google Scholar]
  8. Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis, K.N., Mohammadi, A. Covid-caps: A capsule network-based framework for identification of covid-19 cases from x-ray images. Pattern Recogn Lett. 2020;138:638–643. doi: 10.1016/j.patrec.2020.09.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  9. Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., Xia, L. (2020) Correlation of chest ct and rt- pcr testing in coronavirus disease 2019 (covid- 19) in china: areport of 1014 cases. Radiology, pp 200642 [PMC free article] [PubMed] [PubMed] [Google Scholar]
  10. Alimadadi A, Aryal S, Manandhar I, Munroe PB, Joe, Cheng X (2020) Artificial intelligence and machinelearning to fight covid-19 [PMC free article] [PubMed] [Google Scholar]
  11. Altman NS. An introduction to kernel and nearest- neighbor non parametric regression. The American Statistician. 1992;46(3):175–185. [Google Scholar] [Google Scholar]
  12. Apostolopoulos ID, Mpesiana TA. Covid-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine. 2020;43(2):635–640. doi: 10.1007/s13246-020-00865-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [PubMed] [Google Scholar]
  13. Arora R, Bansal V, Buckchash H, Kumar R, Sahayasheela V J, Narayanan N, Pandian G N, Raman B (2020) Ai-based diagnosis of covid-19 patients using x-ray scans with stochastic ensemble of cnns. TechRxiv [PMC free article] [PubMed] [Google Scholar]
  14. Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (covid-19) classification using ct images by machinelearning methods. arXiv preprint arXiv:2003.09424 [Google Scholar]
  15. Basu S, Mitra S, Saha N (2020) Deep learning forscreening covid-19 using chest x-ray images. In: 2020 IEEE symposium series on computational intelligence (SSCI). IEEE, pp 2521–2527 [CrossRef] [Google Scholar]
  16. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing. Springer, pp 1–4 [Google Scholar]
  17. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. Journal of machine learning research, 13(2) [Google Scholar]
  18. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  19. Bukhari SUK, Bukhari SSK, Syed A, Shah SSH (2020) The diagnostic evaluation of convolutional neural network (cnn) for the assessment of chest x-ray of patients infected with covid-19. medRxiv [Google Scholar]
  20. Chandra TB, Verma K, Singh BK, Jain D, Netam SS. Coronavirus disease (covid-19) detection in chest x-ray. [Google Scholar]
  21. Rajesh G., Raajini X.M., Sagayam K.M., Dang H., (2020), "A statistical approach for high order epistasis interaction detection for prediction of diabetic macular edema", Informatics in Medicine Unlocked, Vol.20, no., pp.-. doi: 10.1016/j.imu.2020.100362 [CrossRef] [Google Scholar]
  22. Kumar P.S., Fathima K., Karthik B., Kumar S.S., Sowmya B., Ghosh A., (2022), "Studies on Steganography Images and Videos Using Deep Learning Techniques", Lecture Notes in Electrical Engineering, Vol.894 LNEE,no.,pp.707–733. doi: 10.1007/978-981-19-1677-9_64 [CrossRef] [Google Scholar]
  23. Umapathy K., Balaji V., Duraisamy V., Saravanakumar S.S., (2015), "Performance of wavelet based medical image fusion on FPGA using high level language C", Jurnal Teknologi, Vol.76, no.12,pp.105–109. doi: 10.11113/jt.v76.5888 [CrossRef] [Google Scholar]
  24. Vani R.K.K., Sowmya B., Kumar S.R.S., Babu G.N.K.S., Reena R., (2022), "An adaptive fuzzy neuro inference system for classification of ECG CardiacArrthymias", AIP Conference Proceedings, Vol. 2393, no., pp.-. doi: 10.1063/5.0079821 [Google Scholar]
  25. Kohila S., Malliga G.S., (2017), "Classification of the Thyroiditis based on characteristic sonographic textural features and correlated histopathology results", 2016 IEEE International Conference on Signal and Image Processing, ICSIP 2016, Vol.,no.,pp.305–309. doi: 10.1109/SIPROCESS.2016.7888273 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.