Open Access
Issue
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
Article Number 09005
Number of page(s) 9
Section Life Science
DOI https://doi.org/10.1051/e3sconf/202339909005
Published online 12 July 2023
  1. Abdel-Nasser. Mohamed, Antonio Moreno, and Domenec Puig. 2016. “Temporal Mammogram Image Registration Using Optimized Curvilinear Coordinates.” Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2016.01.019. [Google Scholar]
  2. Acharya, U. Rajendra, U. Rajendra Acharya, E. Y. K. Ng, Jen-Hong Tan, and S. Vinitha Sree. 2012. “Thermography Based Breast Cancer Detection Using Texture Features and Support Vector Machine.” Journal of Medical Systems. https://doi.org/10.1007/s10916-010-9611-z. [Google Scholar]
  3. Boogerd, Leonora S.F., Henricus J. M. Handgraaf, Hwai-Ding Lam, Volkert A. L. Huurman, Arantza Farina-Sarasqueta, John V. Frangioni, Cornelis J. H. van de Velde, Andries E. Braat, and Alexander L. Vahrmeijer. 2017. “Laparoscopic Detection and Resection of Occult Liver Tumors of Multiple Cancer Types Using Real-Time near-Infrared Fluorescence Guidance.” Surgical Endoscopy. https://doi.org/10.1007/s00464-016-5007-6. [Google Scholar]
  4. Chiarelli, Anna M., Maegan V. Prummel, Derek Muradali, Rene S. Shumak, Vicky Majpruz, Patrick Brown, Hedy Jiang, Susan J. Done, and Martin J. Yaffe. 2015. “Digital versus Screen-Film Mammography: Impact of Mammographic Density and Hormone Therapy on Breast Cancer Detection.” Breast Cancer Research and Treatment. https://doi.org/10.1007/s10549-015-3622-x. [Google Scholar]
  5. Cho. Nariya, Wonshik Han, Boo-Kyung Han, Min Sun Bae, Eun Sook Ko, Seok Jin Nam, Eun Young Chae, et al. 2017. “Breast Cancer Screening With Mammography Plus Ultrasonography or Magnetic Resonance Imaging in Women 50 Years or Younger at Diagnosis and Treated With Breast Conservation Therapy.” JAMA Oncology. https://doi.org/10.1001/jamaoncol.2017.1256. [Google Scholar]
  6. Díaz-Cortés. Margarita-Arimatea, Noé Ortega-Sánchez, Salvador Hinojosa, Diego Oliva, Erik Cuevas, Raúl Rojas, and Anton Demin. 2018. “A Multi-Level Thresholding Method for Breast Thermograms Analysis Using Dragonfly Algorithm.” Infrared Physics & Technology. https://doi.org/10.1016/j.infrared.2018.08.007. [Google Scholar]
  7. Faust. Oliver, U. Rajendra Acharya, E. Y. K. Ng, Tan Jen Hong, and Wenwei Yu. 2014. “Application of Infrared Thermography in Computer Aided Diagnosis.” Infrared Physics & Technology. https://doi.org/10.1016/j.infrared.2014.06.001. [Google Scholar]
  8. Hamidinekoo. Azam, Erika Denton, Andrik Rampun, Kate Honnor, and Reyer Zwiggelaar. 2018. “Deep Learning in Mammography and Breast Histology, an Overview and Future Trends.” Medical Image Analysis. https://doi.org/10.1016/j.media.2018.03.006. [Google Scholar]
  9. Kennedy, Deborah A., Tanya Lee, and Dugald Seely. 2009. “A Comparative Review of Thermography as a Breast Cancer Screening Technique.” Integrative Cancer Therapies. https://doi.org/10.1177/1534735408326171. [Google Scholar]
  10. Kosus. Nermin, Aydin Kosus, Muzeyyen Duran, Serap Simavli, and Nilgun Turhan. 2010. “Comparison of Standard Mammography with Digital Mammography and Digital Infrared Thermal Imaging for Breast Cancer Screening.” Journal of the Turkish German Gynecological Association. https://doi.org/10.5152/jtgga.2010.24. [Google Scholar]
  11. Litjens. Geert, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van Ginneken, and Clara I. Sánchez. 2017. “A Survey on Deep Learning in Medical Image Analysis.” Medical Image Analysis. https://doi.org/10.1016/j.media.2017.07.005. [Google Scholar]
  12. Malvezzi, M., G. Carioli, P. Bertuccio, P. Boffetta, F. Levi, C. La Vecchia, and E. Negri. 2018. “European Cancer Mortality Predictions for the Year 2018 with Focus on Colorectal Cancer.” Annals of Oncology. https://doi.org/10.1093/annonc/mdy033. [Google Scholar]
  13. Mambou. Sebastien, Petra Maresova, Ondrej Krejcar, Ali Selamat, and Kamil Kuca. 2018. “Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model.” Sensors. https://doi.org/10.3390/s18092799. [Google Scholar]
  14. Mookiah. Muthu Rama Krishnan, U. Rajendra Acharya, and E. Y. K. Ng. 2012. “Data Mining Technique for Breast Cancer Detection in Thermograms Using Hybrid Feature Extraction Strategy.” Quantitative InfraRed Thermography Journal. https://doi.org/10.1080/17686733.2012.738788. [Google Scholar]
  15. Rampun. Andrik, Bryan Scotney, Philip Morrow, Hui Wang, and John Winder. 2018. “Breast Density Classification Using Local Quinary Patterns with Various Neighbourhood Topologies.” Journal of Imaging. https://doi.org/10.3390/jimaging4010014. [Google Scholar]
  16. Saniei. Elham, Saeed Setayeshi, Mohammad Esmaeil Akbari, and Mitra Navid. 2015. “A Vascular Network Matching in Dynamic Thermography for Breast Cancer Detection.” Quantitative InfraRed Thermography Journal. https://doi.org/10.1080/17686733.2015.1005398. [Google Scholar]
  17. Sathish. Dayakshini, Surekha Kamath, K.V. Rajagopal, and Keerthana Prasad. 2016. “Medical Imaging Techniques and Computer Aided Diagnostic Approaches for the Detection of Breast Cancer with an Emphasis on Thermography -a Review.” International Journal of Medical Engineering and Informatics. https://doi.org/10.1504/ijmei.2016.077446. [Google Scholar]
  18. Selle, J. Josephine, J. Josephine Selle, A. Shenbagavalli, B. Venkatraman, M. Menaka, and M. Jayashree. 2015. “Automated Segmentation for Quantitative Analysis of Breast Thermograms.” Proceedings of the 2015 Asia International Conference on Quantitative InfraRed Thermography. https://doi.org/10.21611/qirt.2015.0035. [Google Scholar]
  19. Zhou. Yan, and Cila Herman. 2018. “Optimization of Skin Cooling by Computational Modeling for Early Thermographic Detection of Breast Cancer.” International Journal of Heat and Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.129. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.