Open Access
Issue
E3S Web Conf.
Volume 400, 2023
International Conference on Sciences, Mathematics, and Education (ICoSMEd 2022)
Article Number 01014
Number of page(s) 6
Section Theory and Application in Physics
DOI https://doi.org/10.1051/e3sconf/202340001014
Published online 03 July 2023
  1. L. Chen et al., “A high-energy, long cycle life aqueous hybrid supercapacitor enabled by efficient battery electrode and widened potential window, ” J. Alloys Compd., vol. 877, p. 160273, 2021. [CrossRef] [Google Scholar]
  2. I. Luthfiyah et al., “The effect of spincoating speed on ZnONR microstructure and it’s potential of ZnONR/Aluminum foil electrodes symmetric supercapacitors, ” J. Phys. Conf. Ser., vol. 1595, no. 1, 2020. [Google Scholar]
  3. A. Afif, S. M. Rahman, A. Tasfiah Azad, J. Zaini, M. A. Islam, and A. K. Azad, “Advanced materials and technologies for hybrid supercapacitors for energy storage – A review, ” J. Energy Storage, vol. 25, no. April, p. 100852, 2019. [Google Scholar]
  4. Q. Zong et al., “Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors, ” Chem. Eng. J., vol. 361, pp. 1–11, Apr. 2019. [CrossRef] [Google Scholar]
  5. M. Chuai, X. Chen, K. Zhang, J. Zhang, and M. Zhang, “CuO-SnO 2 reverse cubic heterojunctions as high-performance supercapacitor electrodes, ” J. Mater. Chem. A, vol. 7, no. 3, pp. 1160–1167, 2019. [CrossRef] [Google Scholar]
  6. S. Ghosh, S. M. Jeong, and S. R. Polaki, “A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide, ” Korean J. Chem. Eng., vol. 35, no. 7, pp. 1389–1408, 2018. [CrossRef] [Google Scholar]
  7. N. R. Chodankar et al., “Potentiodynamic polarization assisted phosphorus-containing amorphous trimetal hydroxide nanofibers for highly efficient hybrid supercapacitors, ” J. Mater. Chem. A, vol. 8, no. 11, pp. 5721–5733, 2020. [CrossRef] [Google Scholar]
  8. S. E. I. Suryani, N. Sholeha, T. Suprayogi, A. Taufiq, N. Mufti, and M. Diantoro, “Magnetocapacitance of FC-ATiO3(A = Ba, Ca, Sr) for supercapacitor electrode, ” AIP Conf. Proc., vol. 2251, no. August, 2020. [Google Scholar]
  9. F. U. Zuhri et al., “ZnO-FC-NiCo MOF for prospective supercapacitor materials, ” Mater. Today Proc., vol. 44, pp. 3385–3389, 2020. [Google Scholar]
  10. P. Wang et al., “Porous carbon for high-energy density symmetrical supercapacitor and lithiumion hybrid electrochemical capacitors, ” Chem. Eng. J., vol. 375, 2019. [Google Scholar]
  11. C. Li et al., “Scalable combustion synthesis of graphene-welded activated carbon for highperformance supercapacitors, ” Chem. Eng. J., vol. 414, p. 128781, Jun. 2021. [CrossRef] [Google Scholar]
  12. Q. Zong, C. Liu, H. Yang, Q. Zhang, and G. Cao, “Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors, ” Nano Today, vol. 38, p. 101201, 2021. [CrossRef] [Google Scholar]
  13. N. Wu et al., “Recent Advances of Asymmetric Supercapacitors, ” Adv. Mater. Interfaces, vol. 8, no. 1, pp. 1–17, 2021. [Google Scholar]
  14. H. Peçenek, F. K. Dokan, M. S. Onses, E. Yılmaz, and E. Sahmetlioglu, “Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes, ” Mater. Res. Bull., vol. 149, no. December 2021, p. 111745, 2022. [CrossRef] [Google Scholar]
  15. R. Kumar, S. Sahoo, W. K. Tan, G. Kawamura, A. Matsuda, and K. K. Kar, “Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor, ” J. Energy Storage, vol. 40, no. April, p. 102724, 2021. [Google Scholar]
  16. L. Suryanti et al., “The effect of Mn2O3nanoparticles on its specific capacitance of symmetric supercapacitors FCZnO-x(Mn2O3), ” Mater. Today Proc., vol. 44, pp. 3355–3360, 2020. [Google Scholar]
  17. M. Diantoro, I. Luthfiyah, Istiqomah, H. Wisodo, J. Utomo, and W. Meevasana, “Electrochemical Performance of Symmetric Supercapacitor Based on Activated Carbon Biomass TiO2Nanocomposites, ” J. Phys. Conf. Ser., vol. 2243, no. 1, 2022. [Google Scholar]
  18. C. Zhang et al., “A Facile Synthesis of TiO2-NiCo2S4Ti3C2 Electrode material by Hydrothermal Method and its electrochemical performance for Supercapacitor Application, ” Int. J. Electrochem. Sci., vol. 17, pp. 1–10, 2022. [Google Scholar]
  19. T. Rakesh Kumar, C. H. Shilpa Chakra, S. Madhuri, E. Sai Ram, and K. Ravi, “Microwave-irradiated novel mesoporous nickel oxide carbon nanocomposite electrodes for supercapacitor application, ” J. Mater. Sci. Mater. Electron., vol. 32, no. 15, pp. 20374–20383, 2021. [CrossRef] [Google Scholar]
  20. S. Zallouz, B. Réty, L. Vidal, J. M. Le Meins, and C. Matei Ghimbeu, “Co3O4Nanoparticles Embedded in Mesoporous Carbon for Supercapacitor Applications, ” ACS Appl. Nano Mater., vol. 4, no. 5, pp. 5022–5037, 2021. [CrossRef] [Google Scholar]
  21. H. Shi et al., “Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium[sbnd]sulfur batteries, ” Nano Energy, vol. 60, pp. 743–751, 2019. [CrossRef] [Google Scholar]
  22. J. Miao et al., “Electrochemical Performance of an Asymmetric Coin Cell Supercapacitor Based on Marshmallow-like MnO2/Carbon Cloth in Neutral and Alkaline Electrolytes, ” Energy and Fuels, vol. 35, no. 3, pp. 2766–2774, 2021. [CrossRef] [Google Scholar]
  23. A. K. Worku, D. W. Ayele, N. G. Habtu, M. A. Teshager, and Z. G. Workineh, “Recent progress in MnO2-based oxygen electrocatalysts for rechargeable zinc-air batteries, ” Mater. Today Sustain., vol. 13, p. 100072, 2021. [CrossRef] [Google Scholar]
  24. H. Duan et al., “When Conductive MOFs Meet MnO 2 : High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor, ” 2021. [Google Scholar]
  25. F. Moulai, O. Fellahi, B. Messaoudi, T. Hadjersi, and L. Zerroual, “Electrodeposition of nanostructured γ-MnO2 film for photodegradation of Rhodamine B, ” Ionics (Kiel)., vol. 24, no. 7, pp. 2099–2109, 2018. [CrossRef] [Google Scholar]
  26. X. Song, H. Duan, Y. Zhang, H. Wang, and H. Cao, “Facile synthesis of γ -MnO2/rice husk-based-activated carbon and its electrochemical properties, ” Funct. Mater. Lett., vol. 10, no. 5, pp. 9–11, 2017. [Google Scholar]
  27. P. H. Wadekar, R. V. Khose, D. A. Pethsangave, and S. Some, “One‐pot Facile Synthesis of Sulfur and Nitrogen co‐ functionalized Graphene material using Novel Deep Eutectic Solvent for Supercapacitor applications some 2019.pdf, ” Chem. Sustain. Chem., vol. 12, pp. 1–11, 2019. [CrossRef] [Google Scholar]
  28. Jjung jie Huang, Y. X. Zhang, and jun xiang Zhang, “Characterization of MnO2 and AgNWs Co-Doped into an Activated Carbon Thin Film Electrode for Supercapacitors, ” J. Electron. Mater., vol. 50, no. 11, pp. 6535–6544, 2021. [Google Scholar]
  29. K. Krishnamoorthy, M. S. P. Sudhakaran, P. Pazhamalai, V. K. Mariappan, Y. S. Mok, and S. J. Kim, “A highly efficient 2D siloxene coated Ni foam catalyst for methane dry reforming and an effective approach to recycle the spent catalyst for energy storage applications, ” J. Mater. Chem. A, vol. 7, no. 32, pp. 18950–18958, 2019. [CrossRef] [Google Scholar]
  30. J. Yan et al., “Smart in situ construction of NiS/MoS2 composite nanosheets with ultrahigh specific capacity for high-performance asymmetric supercapacitor, ” J. Alloys Compd., vol. 811, p. 151915, 2019. [CrossRef] [Google Scholar]
  31. S. M. Dinara et al., “Synthesis of a 3D free standing crystalline NiSeX matrix for electrochemical energy storage applications, ” Dalt. Trans., vol. 48, no. 45, pp. 16873–16881, 2019. [CrossRef] [PubMed] [Google Scholar]
  32. H. Wang, N. Mi, S. Sun, W. Zhang, and S. Yao, “Oxygen vacancies enhancing capacitance of MgCo2O4 for high performance asymmetric supercapacitors, ” J. Alloys Compd., vol. 869, p. 159294, 2021. [CrossRef] [Google Scholar]
  33. M. Diantoro, L. Suryanti, F. U. Zuhri, S. E. I. Suryani, and L. Chuenchom, “Manganese Oxide and Temperature Induced on Microstructure and Electrical Properties of Graphene-(Mn2O3)xZnO/Ni Foam, ” IOP Conf. Ser. Mater. Sci. Eng., vol. 515, no. 1, 2019. [Google Scholar]
  34. N. You et al., “Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting, ” Nano Mater. Sci., no. April, pp. 1–9, 2021. [Google Scholar]
  35. M. Diantoro et al., “Hierarchical Activated Carbon – MnO 2 Composite for Wide Potential Window Asymmetric Supercapacitor Devices in Organic Electrolyte, ” 2022. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.