Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 03016
Number of page(s) 12
Section Road Construction, Building Structures and Materials
DOI https://doi.org/10.1051/e3sconf/202340103016
Published online 11 July 2023
  1. Han, S., Song, Y., Ju, T., Meng, Y., Meng, F., Song, M., Lin, L., Liu, M., Li, J., Jiang, J.: Recycling municipal solid waste incineration fly ash in super-lightweight aggregates by sintering with clay and using SiC as bloating agent. Chemosphere. 307, 135895 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2022.135895. [CrossRef] [Google Scholar]
  2. Malkawi, A.B., Nuruddin, M.F., Fauzi, A., Almattarneh, H., Mohammed, B.S.: Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars. Procedia Eng. 148, 710–717 (2016). https://doi.org/10.1016/J.PROENG.2016.06.581. [CrossRef] [Google Scholar]
  3. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q.: A comprehensive review on the applications of coal fly ash. Earth Sci Rev. 141, 105–121 (2015). https://doi.org/10.1016/J.EARSCIREV.2014.11.016. [CrossRef] [Google Scholar]
  4. Shilar, F.A., Ganachari, S. V., Patil, V.B., Neelakanta Reddy, I., Shim, J.: Preparation and validation of sustainable metakaolin based geopolymer concrete for structural application. Constr Build Mater. 371, 130688 (2023). https://doi.org/10.1016/J.CONBUILDMAT.2023.130688. [CrossRef] [Google Scholar]
  5. Sawarkar, P.G., Pote, A., Lal Murmu, A.: Properties of blast furnace slag geopolymer concrete. Mater Today Proc. (2023). https://doi.org/10.1016/J.MATPR.2023.03.179. [Google Scholar]
  6. Vatin, N., Barabanshchikov, Y., Usanova, K., Akimov, S., Kalachev, A., Uhanov, A.: Cement-based materials with oil shale fly ash additives. IOP Conf Ser Earth Environ Sci. 578, 012043 (2020). https://doi.org/10.1088/1755-1315/578/1/012043. [CrossRef] [Google Scholar]
  7. Barabanshchikov, Y., Usanova, K., Akimov, S., Uhanov, A., Kalachev, A.: Influence of Electrostatic Precipitator Ash "Zolest-Bet" and Silica Fume on Sulfate Resistance of Portland Cement. Materials. 13, 1–13 (2020). https://doi.org/10.3390/MA13214917. [CrossRef] [Google Scholar]
  8. Raju, S., Rathinam, J., Dharmar, B., Rekha, S., Avudaiappan, S., Amran, M., Usanova, K., Fediuk, R., Guindos, P., Ramamoorthy, R.V.: Cyclically Loaded Copper Slag Admixed Reinforced Concrete Beams with Cement Partially Replaced with Fly Ash. Materials. 15, (2022). https://doi.org/10.3390/MA15093101. [Google Scholar]
  9. Usanova, K., Barabanshchikov, Yu.G.: Cold-bonded fly ash aggregate concrete. Magazine of Civil Engineering. 95(3), 104–118 (2020). https://doi.org/10.18720/MCE.95.10. [Google Scholar]
  10. Usanova, K.Y.: Properties of Cold-Bonded Fly Ash Lightweight Aggregate Concretes. Lecture Notes in Civil Engineering. 70, 507–516 (2020). https://doi.org/10.1007/9783-030-42351-3_44. [Google Scholar]
  11. Kockal, N.U., Ozturan, T.: Strength and elastic properties of structural lightweight concretes. Mater Des. 32, 2396–2403 (2011). https://doi.org/10.1016/j.matdes.2010.12.053. [CrossRef] [Google Scholar]
  12. Kockal, N.U., Ozturan, T.: Properties of lightweight concretes made from lightweight fly ash aggregates. Excellence in Concrete Construction through Innovation Proceedings of the International Conference on Concrete Construction. 251–261 (2009). [Google Scholar]
  13. Joseph, G., Ramamurthy, K.: Workability and strength behaviour of concrete with cold-bonded fly ash aggregate. Materials and Structures/Materiaux et Constructions. 42, 151–160 (2009). https://doi.org/10.1617/s11527-008-9374-x. [Google Scholar]
  14. Gesoǧlu, M., Güneyisi, E., Ali, B., Mermerdaş, K.: Strength and transport properties of steam cured and water cured lightweight aggregate concretes. Constr Build Mater. 49, 417–424 (2013). https://doi.org/10.1016/j.conbuildmat.2013.08.042. [CrossRef] [Google Scholar]
  15. Their, J.M., Özakça, M.: Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Constr Build Mater. 180, 12–22 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.274. [CrossRef] [Google Scholar]
  16. Gesoglu, M., Özturan, T., Güneyisi, E.: Shrinkage cracking of lightweight concrete made with cold-bonded fly ash aggregates. Cem Concr Res. 34, 1121–1130 (2004). https://doi.org/10.1016/j.cemconres.2003.11.024. [CrossRef] [Google Scholar]
  17. Gesoǧlu, M., Özturan, T., Güneyisi, E.: Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes. Cem Concr Compos. 28, 598–605 (2006). https://doi.org/10.1016/j.cemconcomp.2006.04.002. [CrossRef] [Google Scholar]
  18. Priyadharshini, P., Mohan Ganesh, G., Santhi, A.S.: Effect of cold bonded fly ash aggregates on strength & restrained shrinkage properties of concrete. IEEE-International Conference on Advances in Engineering, Science and Management, ICAESM-2012. 160–164 (2012). [Google Scholar]
  19. Xu, G., Shi, X.: Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resour Conserv Recycl. 136, 95–109 (2018). https://doi.org/10.1016/J.RESCONREC.2018.04.010. [CrossRef] [Google Scholar]
  20. Zhang, N., Yu, H., Gong, W., Liu, T., Wang, N., Tan, Y., Wu, C.: Effects of low-and high-calcium fly ash on the water resistance of magnesium oxysulfate cement. Constr Build Mater. 230, 116951 (2020). https://doi.org/10.1016/J.CONBUILDMAT.2019.116951. [CrossRef] [Google Scholar]
  21. Fan, W.J., Wang, X.Y., Park, K.B.: Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete. Materials 2015, Vol. 8, Pages 5933-5952. 8, 5933–5952 (2015). https://doi.org/10.3390/MA8095282. [CrossRef] [PubMed] [Google Scholar]
  22. Barabanshchikov, Y., Usanova, K.: Influence of Silica Fume on High-Calcium Fly Ash Expansion during Hydration. Materials 2022, Vol. 15, Page 3544. 15, 3544 (2022). https://doi.org/10.3390/MA15103544. [CrossRef] [PubMed] [Google Scholar]
  23. Limbachiya, M., Meddah, M.S., Ouchagour, Y.: Use of recycled concrete aggregate in fly-ash concrete. Constr Build Mater. 27, 439–449 (2012). https://doi.org/10.1016/J.CONBUILDMAT.2011.07.023. [Google Scholar]
  24. Lima, C., Caggiano, A., Faella, C., Martinelli, E., Pepe, M., Realfonzo, R.: Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Constr Build Mater. 47, 547–559 (2013). https://doi.org/10.1016/J.CONBUILDMAT.2013.04.051. [CrossRef] [Google Scholar]
  25. Kou, S.C., Poon, C.S.: Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem Concr Compos. 37, 12–19 (2013). https://doi.org/10.1016/J.CEMCONCOMP.2012.12.011. [CrossRef] [Google Scholar]
  26. Shanmugasundaram, S., Jayanthi, S., Sundararajan, R., Umarani, C., Jagadeesan, K.: Study on Utilization of Fly Ash Aggregates in Concrete. Mod Appl Sci. 4, (2010). https://doi.org/10.5539/mas.v4n5p44. [CrossRef] [Google Scholar]
  27. Revilla-Cuesta, V., Skaf, M., Chica, J.A., Fuente-Alonso, J.A., Ortega-López, V.: Thermal deformability of recycled self-compacting concrete under cyclical temperature variations. Mater Lett. 278, 128417 (2020). https://doi.org/10.1016/j.matlet.2020.128417. [CrossRef] [Google Scholar]
  28. Hussein, H.H., Walsh, K.K., Sargand, S.M., Steinberg, E.P., Professor, A., Professor, R.: Effect of Extreme Temperatures on the Coefficient of Thermal Expansion for Ultra-High Performance Concrete. International Interactive Symposium on Ultra-High Performance Concrete, 1(1). (2016). https://doi.org/10.21838/uhpc.2016.108. [Google Scholar]
  29. Sahoo, S., Selvaraju, A.K., Suriya Prakash, S.: Mechanical characterization of structural lightweight aggregate concrete made with sintered fly ash aggregates and synthetic fibres. Cem Concr Compos. 113, 103712 (2020). https://doi.org/10.1016/J.CEMCONCOMP.2020.103712. [CrossRef] [Google Scholar]
  30. Kayali, O., Haque, M.N., Zhu, B.: Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cem Concr Res. 29, 1835–1840 (1999). https://doi.org/10.1016/S0008-8846(99)00179-9. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.