Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 05045
Number of page(s) 12
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202340105045
Published online 11 July 2023
  1. Mirsaidov M. M., Troyanovsky I. E. The wave problem of the earthquake resistance of a structure under the Rayleigh wave propagation in elastic half-space. of AS RUz, ser., No. 5, Tech. Sci. – Tashkent, Pp. 48-51,1980. [Google Scholar]
  2. Mirsaidov M.M., Sultanov T.Z., Rumi D.F. An assessment of dynamic behavior of the system “structure -Foundation” with account of wave removal of energy. Magazine of Civil Engineering, 39(4), Pp. 94-105, 2013. [Google Scholar]
  3. Mirsaidov M.M., Troyanovsky E.I. Dynamics of inhomogeneous systems with allowance for internal dissipation and wave entrainment of energy. Tashkent: Fan, P.108, 1990. [Google Scholar]
  4. Arnkjell Løkke and Anil K. Chopra, M.ASCE. Response Spectrum Analysis of Concrete Gravity Dams Including Dam-Water-Foundation Interaction. Journal of Structural Engineering. 2015. [Google Scholar]
  5. Løkke A., Chopra A. Direct finite element method for non-linear earthquake analysis of 3‐dimensional semi‐unbounded dam–water–foundation rock systems. Earthquake Engineering & Structural Dynamics. [Google Scholar]
  6. Arnkjell Løkke, Anil K. Chopra. Direct finite element method for non-linear earthquake analysis of concrete dams: Simplification, modeling, and practical application. Earthquake Engineering & Structural Dynamics. 2019. doi: 10.1002/eqe.3150 [Google Scholar]
  7. Nazim Abdul Nariman, Tom Lahmer, Peyman Karampour, Uncertainty quantification of stability and damage detection parameters of coupled hydrodynamic-ground motion in concrete gravity dams. Front. Struct. Civ. Eng. Vol. 13. Issue (2). Pp. 303-323, 2019. [CrossRef] [Google Scholar]
  8. Meen-WahGui and Hsien-Te Chiu, Seismic response of Renyitan earth-fill dam. Journal of Geo Engineering. Vol. 4, №2, Pp.41-50, 2009. [Google Scholar]
  9. Nakamura N. Improvement of energy transmitting boundary for three-dimensional non-linear analysis. 16th World Conference on Earthquake Santiago Chile. Paper N° 1714 (16WCEE 2017). [Google Scholar]
  10. Nakamura N. Three-dimensional energy transmitting boundary in the time domain. Front. Built Environ.1:21, 2015. doi: 10.3389/fbuil.2015.00021 [CrossRef] [Google Scholar]
  11. Y.Gao, H.Song, J.Zhang, Z. Yao Comparison of artificial absorbing boundaries for acoustic wave equation modeling // Exploration Geophysics. 48(1). Pp.76-93. (2015) [Google Scholar]
  12. Chaillat S., Darbas M., Le Louër F. Approximate local Dirichlet-to-Neumann map for three-dimensional time-harmonic elastic waves. Computer Methods in Applied Mechanics and Engineering. Vol.297. 62-83, 2015. [CrossRef] [Google Scholar]
  13. Takekawa J., Mikada H. An absorbing boundary condition for acoustic-wave propagation using a mesh-free method.. 81(4) Pp.145-154, 2016. [Google Scholar]
  14. Mandal A., Maity D. Finite Element Analysis of Dam-Foundation Coupled System Considering Cone-Type Local Non-Reflecting Boundary Condition. Journal of Earthquake Engineering.. 20, Issue 3, Pp.428-446, 2016. [Google Scholar]
  15. Ilgamov M.A., Gilmanov A.N. Non-reflecting conditions at the boundaries of the computational domain. Moscow: Fizmatlit, P.240, 2003. [Google Scholar]
  16. Ismailova S.I., Sultanov K.S. Non-linear deformation laws for composite threads in extension. Mechanics of Solids, 50(5) 578–590. 2015. [CrossRef] [Google Scholar]
  17. Sultanov K.S., Loginov P.V, Ismoilova S.I. Quasistaticity of the process of dynamic strain of soils. Magazine of Civil Engineering. No.1(85), pp.71–91, 2019. [Google Scholar]
  18. Bakhodirov A.A., Ismailova S.I., Sultanov K.S. Dynamic deformation of the contact layer when there is shear interaction between a body and the soil. Journal of Applied Mathematics and Mechanics, 79(6) 587–595, 2015. [CrossRef] [Google Scholar]
  19. Mirsaidov M.M. et al., Assessment of dynamic behavior of earth dams taking into account large strains. E3S Web of Conferences. 97, 05019. 2019. [CrossRef] [EDP Sciences] [Google Scholar]
  20. Sultanov T.Z., Khodzhaev D.A., Mirsaidov M.M. The assessment of dynamic behavior of heterogeneous systems taking into account non-linear viscoelastic properties of soil. Magazine of Civil Engineering. 45(1), с. 80-89+117-118. [Google Scholar]
  21. Usarov M., Mamatisaev G., Yarashov J., Toshmatov E. Non-stationary oscillations of a box-like structure of a building. Journal of Physics: Conference Series, 2020. https://doi.org/10.1088/1742-6596/1425/1/012003. [Google Scholar]
  22. Yarashov J., Usarov M., Ayubov G. Study of longitudinal oscillations of a five-storey building on the basis of plate continuum model // E3S Web of Conferences 97, Form-2019, 04065, 2019. [CrossRef] [EDP Sciences] [Google Scholar]
  23. Mirsaidov M.M., Sultanov T.Z., Sadullaev A. Determination of the stress-strain state of earth dams with account of elastic-plastic and moist properties of soil and large strains. Magazine of Civil Engineering. 40(5), Pp. 59-68. [Google Scholar]
  24. Khodzhaev D.A., Abdikarimov R.A., Mirsaidov M.M., Dynamics of a physically non-linear viscoelastic cylindrical shell with a concentrated mass. Magazine of Civil Engineering. 91(7), Pp. 39–48, 2019. doi: 10.18720/MCE.91.4 [Google Scholar]
  25. Mirsaidov M.M., Boytemirov M., Yuldashev F. Estimation of the Vibration Waves Level at Different Distances. Lecture Notes in Civil Engineering., 170, Pp.207–215, 2022. [CrossRef] [Google Scholar]
  26. Urazmukhamedova Z., Juraev D., Mirsaidov M.M. Assessment of stress state and dynamic characteristics of plane and spatial structure. Journal of Physics: Conference Series. 2070(1), 012156, 2021. [Google Scholar]
  27. Koltunov M.A., Kravchuk A.S., Mayboroda V.P., Applied mechanics of a deformable rigid body. M.: Higher school. P.349, 1983. [Google Scholar]
  28. Bate K., Wilson E. Numerical methods of analysis and FEM. Moscow: Stroyizdat, P. 448, 1982. [Google Scholar]
  29. Badalov F.B. Methods for solving integral and integro-differential equations of the hereditary theory of viscoelasticity. Tashkent: Mekhnat, P.269, 1987. [Google Scholar]
  30. Rzhanitsyn A.R. Creep theory. Moscow: Stroyizdat, P. 416, 1968. [Google Scholar]
  31. Mirsaidov M.M., Sultanov T.Z. Use of linear heredity theory of viscoelasticity for dynamic analysis of earthen structures. Soil Mechanics and Foundation Engineering. Vol. 49, Iss. 6, Pp. 250-256, 2013. doi: 10.1007/s11204-013-9198-8. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.