Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 05093
Number of page(s) 7
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202340105093
Published online 11 July 2023
  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. science 306, 666-669 (2004). [Google Scholar]
  2. Razzokov, J., Marimuthu, P., Saidov, K., Ruzimuradov, O. & Mamatkulov, S. Penetration of Chitosan into the Single Walled Armchair Carbon Nanotubes: Atomic Scale Insight. Crystals 11, 1174 (2021). [CrossRef] [Google Scholar]
  3. Huang, C. et al. Lateral heterojunctions within monolayer MoSe 2–WSe 2 semiconductors. Nature materials 13, 1096-1101 (2014). [CrossRef] [PubMed] [Google Scholar]
  4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. nature 438, 197-200 (2005). [Google Scholar]
  5. Lin, Y. F. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Advanced Materials 26, 3263-3269 (2014). [CrossRef] [Google Scholar]
  6. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature physics 2, 177-180 (2006). [CrossRef] [Google Scholar]
  7. Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315, 1379-1379 (2007). [CrossRef] [PubMed] [Google Scholar]
  8. Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano letters 16, 7798-7806 (2016). [CrossRef] [PubMed] [Google Scholar]
  9. Wu, K., Ma, H., Gao, Y., Hu, W. & Yang, J. Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. Journal of Materials Chemistry A 7, 7430-7436 (2019). [CrossRef] [Google Scholar]
  10. Wen, P. et al. Gate‐Tunable Photovoltaic Effect in MoTe2 Lateral Homojunction. Advanced Electronic Materials, 2101144 (2021). [Google Scholar]
  11. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature materials 14, 301-306 (2015). [CrossRef] [PubMed] [Google Scholar]
  12. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425 (2013). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  13. Pezeshki, A., Shokouh, S. H. H., Nazari, T., Oh, K. & Im, S. Electric and photovoltaic behavior of a few‐layer α‐MoTe2/MoS2 dichalcogenide heterojunction. Advanced Materials 28, 3216-3222 (2016). [CrossRef] [Google Scholar]
  14. Fathipour, S. et al. Exfoliated multilayer MoTe2 field-effect transistors. Applied Physics Letters 105, 192101 (2014). [CrossRef] [Google Scholar]
  15. Ahmed, F. et al. Multilayer MoTe2 Field‐Effect Transistor at High Temperatures. Advanced Materials Interfaces 8, 2100950 (2021). [CrossRef] [Google Scholar]
  16. Han, X. et al. Multi-wavelength solitons delivered by an evanescent-field device based on polarization-sensitive MoTe 2 micro-sheets. Optical Materials Express 11, 3780-3791 (2021). [CrossRef] [Google Scholar]
  17. Schmidt, H., Giustiniano, F. & Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chemical Society Reviews 44, 7715-7736 (2015). [CrossRef] [PubMed] [Google Scholar]
  18. Marini, G. & Calandra, M. Light-Tunable Charge Density Wave Orders in MoTe 2 and WTe 2 Single Layers. Physical Review Letters 127, 257401 (2021). [CrossRef] [PubMed] [Google Scholar]
  19. Nakaharai, S., Yamamoto, M., Ueno, K. & Tsukagoshi, K. Carrier polarity control in α-MoTe2 Schottky junctions based on weak Fermi-level pinning. ACS applied materials & interfaces 8, 14732-14739 (2016). [CrossRef] [PubMed] [Google Scholar]
  20. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature nanotechnology 8, 952-958 (2013). [CrossRef] [PubMed] [Google Scholar]
  21. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS 2. Nature nanotechnology 8, 497-501 (2013). [CrossRef] [PubMed] [Google Scholar]
  22. Ghimire, M. K. et al. Defect-affected photocurrent in MoTe2 FETs. ACS applied materials & interfaces 11, 10068-10073 (2019). [CrossRef] [PubMed] [Google Scholar]
  23. Choi, H. et al. Edge contact for carrier injection and transport in MoS2 field-effect transistors. ACS nano 13, 13169-13175 (2019). [CrossRef] [PubMed] [Google Scholar]
  24. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal– semiconductor junctions. Nature 557, 696-700 (2018). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  25. Parto, K. et al. One-Dimensional Edge Contacts to Two-Dimensional Transition-Metal Dichalcogenides: Uncovering the Role of Schottky-Barrier Anisotropy in Charge Transport across Mo S 2/Metal Interfaces. Physical Review Applied 15, 064068 (2021). [CrossRef] [Google Scholar]
  26. Wang, Z. et al. MoTe 2: a type-II Weyl topological metal. Physical review letters 117, 056805 (2016). [CrossRef] [PubMed] [Google Scholar]
  27. Aftab, S. et al. Formation of an MoTe 2 based Schottky junction employing ultra-low and high resistive metal contacts. RSC advances 9, 10017-10023 (2019). [CrossRef] [PubMed] [Google Scholar]
  28. Kuiri, M. et al. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures. Applied Physics Letters 108, 063506 (2016). [CrossRef] [Google Scholar]
  29. Zhu, X., Wang, L. & Chen, L. Adsorption and dissociation of O 2 on MoSe 2 and MoTe 2 monolayers: ab initio study. International Journal of Modern Physics B 28, 1450195 (2014). [CrossRef] [Google Scholar]
  30. Zhang, Y. et al. Photothermoelectric and photovoltaic effects both present in MoS 2. Scientific reports 5, 1-7 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.