Open Access
Issue
E3S Web of Conf.
Volume 402, 2023
International Scientific Siberian Transport Forum - TransSiberia 2023
Article Number 03003
Number of page(s) 10
Section Mathematical Modeling, IT, Industrial IoT, AI, and ML
DOI https://doi.org/10.1051/e3sconf/202340203003
Published online 19 July 2023
  1. Nikishechkin P., Kovalev I., Nikich A. An approach to building a cross-platform system for the collection and processing of diagnostic information about working technological equipment for industrial enterprises // MATEC Web of Conferences. – 2017. – V. 129. – P. 03012. https://doi.org/10.1051/matecconf/201712903012. [CrossRef] [EDP Sciences] [Google Scholar]
  2. Kvashnin D.Yu., Kovalev I.A., Nezhmetdinov R.A., Chekryzhov V.V. Aggregation of information on the operation of technological equipment using the Industrial Internet of Things // Automation in Industry, No. 5. 2019. pp. 29-32. [Google Scholar]
  3. Austin S., Zavaliagkos G., Makhoul J., Schwartz R. Speech recognition using segmental neural nets // IEEE ICASSP, San Francisco, March 1992, pp. I-625-628. [Google Scholar]
  4. Austin S., Zavaliagkos G., Makhoul J., Schwartz R. Improving state-of the-art continuous speech recognition system using the N-best paradigm with neural networks // Proceedings DARPA Speech and Natural Language Workshop, Harriman, NY (Morgan Kaufmann, Los Altos, CA). 1992. pp. 180-184. [CrossRef] [Google Scholar]
  5. Chris Albon. Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning. O'Reilly Media. 2018. pp. 336. [Google Scholar]
  6. J. Makhoul, S. Roucos and H. Gish, “Vector Quantization in Speech Coding,” Proceedings of the IEEE, Vol. 73, No. 11, 1985, pp. 1551-1588. [CrossRef] [Google Scholar]
  7. A. Kapoor, A. Gulli, S. Pal. Deep Learning with TensorFlow and Keras: Build and deploy supervised, unsupervised, deep, and reinforcement learning models. Packt Publishing. 2022. pp. 698. [Google Scholar]
  8. Evstafieva S.V., Pushkov R.L., Salamatin E.V. Collection and visualization of operational data from technological equipment // Automation in industry, No. 5. 2019. pp. 26-28. [Google Scholar]
  9. Martinova, L., Kozak, N., Nezhmetdinov, R., Pushkov, R. and Obukhov, A.. The Russian multi-functional CNC system AxiOMA control: Practical aspects of application. Automation and Remote Control, 76(1), 2015. pp.179-186. [CrossRef] [Google Scholar]
  10. Kovalev, I., Nezhmetdinov, R., and Kvashnin, D. (2019). Big data analytics of the technological equipment based on Data Lake architecture. In MATEC Web of Conferences (Vol. 298, p. 00079). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Martinova L.I., Kozak N.V., Kovalev I.A., Lyubimov A.B. Creation of tools for monitoring the health of the machine for digital production // Automation in industry, No. 5. 2020. pp. 24-29. DOI: 10.25728/avtprom.2020.05.05 [Google Scholar]
  12. L. Tuktamysheva, , I. Kovalev, , R. Nezmetdinov, “Development of Methods for Analyzing the Process of Operator Training When Working with a CNC System Using Components of Analytical Systems”. Proceedings - 2022 International Russian Automation Conference, RusAutoCon 2022, 2022, pp. 788–793 [CrossRef] [Google Scholar]
  13. M. Calabrese, M. Cimmino, F. Fiume, M. Manfrin, L. Romeo, S. Ceccacci, M. Paolanti, G. Toscano, G. Ciandrini, A. Carrotta, M. Mengoni, E. Frontoni, D. Kapetis, SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0, Information (Switzerland) 11 (4) (2020) 1–17. doi:10.3390/INFO11040202. [Google Scholar]
  14. Nikishechkin, P. A., Chervonnova, N. Y. and Nikich, A. N. An approach of developing solution for monitoring the status and parameters of technological equipment for the implementation of Industry 4.0 // In IOP Conference Series: Materials Science and Engineering, (2020), (Vol. 709, No. 4, p. 044065). [CrossRef] [Google Scholar]
  15. Mourtzis D., Milas N., Athinaios N. Towards Machine Shop 4.0: A General Machine Model for CNC machine-tools through OPC-UA. (2018) Procedia CIRP, 78, pp. 301 - 306. [CrossRef] [Google Scholar]
  16. L. Martinova and G. Martinov, “An Approach to The Implementation of the Machine Safety Function Using an Integrated in the CNC System Softplc and an External Safety Controller Made According to the SoftPlC,” 2022 International Russian Automation Conference (RusAutoCon), 2022, pp. 961-965 [Google Scholar]
  17. Martinov, G.M., Sokolov, S.V., Pushkov, R.L., Obukvov A.I., Evstafieva S.V. “Control of the machine tools with variable kinematics”. Int J Adv Manuf Technol (2021). [Google Scholar]
  18. Martinov, G.M., Kozak, N.V. & Nikishechkin, P.A. Approach to Solving the Task of Backup on Machine Tools with CNC. Russ. Engin. Res. 40, 2020.pp. 1024–1029. [CrossRef] [Google Scholar]
  19. Martinov, G., Kozak, N. and Nezhmetdinov, R. Approach in Implementing of Logical Task for Numerical Control on Basis of Concept “Industry 4.0”. 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). [Google Scholar]
  20. Martinov, G. and Kozak, N. Numerical control of large precision machining centers by the AxiOMA contol system. Russian Engineering Research, 35(7), 2015. pp. 534-538. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.