Open Access
Issue |
E3S Web of Conf.
Volume 402, 2023
International Scientific Siberian Transport Forum - TransSiberia 2023
|
|
---|---|---|
Article Number | 14038 | |
Number of page(s) | 6 | |
Section | Materials Chemistry and Physics | |
DOI | https://doi.org/10.1051/e3sconf/202340214038 | |
Published online | 19 July 2023 |
- Gielen, D., et al., The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 2019. 24: p. 38–50. [CrossRef] [Google Scholar]
- Child, M., et al., Sustainability guardrails for energy scenarios of the global energy transition. Renewable and Sustainable Energy Reviews, 2018. 91: p. 321–334. [CrossRef] [Google Scholar]
- Grubler, A., et al., A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission technologies. Nature energy, 2018. 3(6): p. 515–527. [CrossRef] [Google Scholar]
- Wang, Z.L. and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006. 312(5771): p. 242–246. [CrossRef] [PubMed] [Google Scholar]
- Pan, Z.W., Z.R. Dai, and Z.L. Wang, Nanobelts of semiconducting oxides. Science, 2001. 291(5510): p. 1947–1949. [CrossRef] [PubMed] [Google Scholar]
- Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications. Journal of physics: condensed matter, 2004. 16(25): p. R829. [CrossRef] [Google Scholar]
- Wang, Z.L., Nanostructures of zinc oxide. Materials today, 2004. 7(6): p. 26–33. [CrossRef] [Google Scholar]
- Luo, L., B.D. Sosnowchik, and L. Lin, Room temperature fast synthesis of zinc oxide nanowires by inductive heating. Applied Physics Letters, 2007. 90(9): p. 093101. [CrossRef] [Google Scholar]
- Xu, S., et al., Self-powered nanowire devices. Nature nanotechnology, 2010. 5(5): p. 366–373. [CrossRef] [PubMed] [Google Scholar]
- Xu, S., et al., Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS nano, 2009. 3(7): p. 1803–1812. [CrossRef] [PubMed] [Google Scholar]
- Huang, M.H., et al., Room-temperature ultraviolet nanowire nanolasers. science, 2001. 292(5523): p. 1897–1899. [CrossRef] [PubMed] [Google Scholar]
- Van Ngoc, H. and D.J. Kang, Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes. Nanoscale, 2016. 8(9): p. 5059–5066. [Google Scholar]
- He, W., et al., Ultrahigh output piezoelectric and triboelectric hybrid nanogenerators based on ZnO nanoflakes/polydimethylsiloxane composite films. ACS applied materials & interfaces, 2018. 10(51): p. 44415–44420. [CrossRef] [PubMed] [Google Scholar]
- Ali, A., et al., Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC advances, 2019. 9(47): p. 27432–27438. [CrossRef] [PubMed] [Google Scholar]
- Chen, W., et al., Hierarchical NiCo2O4 Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor. Applied Surface Science, 2018. 451: p. 280–288. [CrossRef] [Google Scholar]
- Wang, P., et al., Modulation of the structure and magnetic properties of the Ni1-xCo2-yO4 powders by hydrothermal temperature. Physica B: Condensed Matter, 2019. 561: p. 147–154. [Google Scholar]
- Zhang, R., et al., Highly conductive n-type NiCo2O4-δ epitaxial thin films grown by RF sputtering. Materials Letters, 2017. 199: p. 164–167. [CrossRef] [Google Scholar]
- Alharthi, F.A., et al., Facile one-pot green synthesis of Ag–ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties. Scientific Reports, 2020. 10(1): p. 1–14. [CrossRef] [PubMed] [Google Scholar]
- Xia, X., et al., Novel Metal Carbon Spheres Core–Shell Arrays by Controlled Self‐Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. Advanced Energy Materials, 2015. 5(6): p. 1401709. [CrossRef] [Google Scholar]
- Mallem, S.P.R., et al., Potato chip-like 0D interconnected ZnCo2O4 nanoparticles for high-performance supercapacitors. Crystals, 2021. 11(5): p. 469. [CrossRef] [Google Scholar]
- Chen, X., et al., Synthesis and characterization of a NiCo2O4@ NiCo2O4 hierarchical mesoporous nanoflake electrode for supercapacitor applications. Nanomaterials, 2020. 10(7): p. 1292. [CrossRef] [PubMed] [Google Scholar]
- Wan, H., et al., Nickel nanowire porous NiCo2O4 nanorods arrays grown on nickel foam as efficient pseudocapacitor electrode. Frontiers in Energy Research, 2017. 5: p. 33. [CrossRef] [Google Scholar]
- Zhang, J., P.S. Shewale, and K.-S. Yun, Fiber-shaped supercapacitors fabricated using hierarchical nanostructures of NiCo2O4 nanoneedles and MnO2 nanoflakes on roughened Ni wire. Energies, 2019. 12(16): p. 3127. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.