Open Access
Issue
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
Article Number 02017
Number of page(s) 9
Section Renewable Energy & Electrical Technology
DOI https://doi.org/10.1051/e3sconf/202340502017
Published online 26 July 2023
  1. A. Khamparia, D. Gupta, N. G. Nguyen, A. Khanna, B. Pandey, and P. Tiwari, Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network, IEEE Access, 7, pp. 7717–7727, (2019) [CrossRef] [Google Scholar]
  2. Z. Ma et al., Speech Recognition using Convolution Deep Neural Networks, J Phys Conf Ser, 1973, no. 1, p. 012166, Aug. (2021) [CrossRef] [Google Scholar]
  3. F. Demir, D. A. Abdullah, and A. Sengur, A New Deep CNN Model for Environmental Sound Classification, IEEE Access, 8, pp. 66529–66537, (2020) [CrossRef] [Google Scholar]
  4. F. Elghaish, S. Talebi, E. Abdellatef, S.T. Matarneh, M.R. Hosseini, S. Wu, M. Mayouf, A. Hajirasouli, T.Q. Nguyen, Developing a new deep learning CNN model to detect and classify highway cracks, Journal of Engineering, Design and Technology, 20(4), pp.993–1014 (2021) [Google Scholar]
  5. P. Rashmi and M. P. Singh, Convolution neural networks with hybrid feature extraction methods for classification of voice sound signals, in Proceedings of WJAET, 8 (2), pp. 110–125, (2023) [Google Scholar]
  6. A. Hassan, I. Shahin, M.B. Alsabek, COVID-19 detection system using recurrent neural networks, in Proceeding of the International conference on communications, computing, cybersecurity, and informatics (CCCI), 3 Nov 2020 (2020) [Google Scholar]
  7. A. S. Ba Wazir, H. A. Karim, M. H. L. Abdullah, and S. Mansor, Acoustic Pornography Recognition Using Recurrent Neural Network, in Proceedings of the 2019 IEEE International Conference on Signal, and Image Processing Applications, ICSIPA, pp. 144–148, (2019) [CrossRef] [Google Scholar]
  8. J. Acharya and A. Basu, Deep Neural Network for Respiratory Sound Classification in Wearable Devices Enabled by Patient Specific Model Tuning, IEEE Trans Biomed Circuits Syst, 14 (3), pp. 535–544, (2020) [PubMed] [Google Scholar]
  9. B. Jena, A. Mohanty, and S. K. Mohanty, Gender Recognition of Speech Signal using KNN and SVM, SSRN Electronic Journal (2021). [Google Scholar]
  10. S. P. Dewi, A. L. Prasasti, and B. Irawan, Analysis of LFCC feature extraction in baby crying classification using KNN, in Proceedings of the IEEE International Conference on Internet of Things and Intelligence System, IoTaIS, pp. 86–91, (2019). [Google Scholar]
  11. Y. Lu and C. Chu, A Novel Piano Arrangement Timbre Intelligent Recognition System Using Multilabel Classification Technology and KNN Algorithm, Comput Intell Neurosci, 2022, (2022). [Google Scholar]
  12. C.-H. Chen, W.-T. Huang, T.-H. Tan, C.-C. Chang, and Y.-J. Chang, Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds, Sensors, 15 (6), pp. 13132–13158 (2015). [CrossRef] [PubMed] [Google Scholar]
  13. F. Li et al., Feature extraction and classification of heart sound using 1D convolutional neural networks, EURASIP J Adv Signal Process, 2019 (1), pp. 1–11, (2019). [CrossRef] [Google Scholar]
  14. R.V. Sharan, T.J. Moir, Acoustic event recognition using cochleagram image and convolutional neural networks, Applied Acoustics Elsevier, 148 (2019) [Google Scholar]
  15. Y. Yin, N. Ji, X Wang, W Shen, B Dai, S. Kou, C. Liang, An investigation of fusion strategies for boosting pig cough sound recognition, Comput Electron Agric, 205, p. 107645 (2023) [CrossRef] [Google Scholar]
  16. N. Khaled, S. Mohsen, K. E. El-Din, S. Akram, H. Metawie, and A. Mohamed, In- Door Assistant Mobile Application Using CNN and TensorFlow, in Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), IEEE, (2020) [Google Scholar]
  17. T. Anvarjon, Mustaqeem, and S. Kwon, “Deep-Net: A Lightweight CNN-Based Speech Emotion Recognition System Using Deep Frequency Features,” Sensors, 20 (18), p. 5212, (2020) [CrossRef] [PubMed] [Google Scholar]
  18. F. Elghaish et al., “Developing a new deep learning CNN model to detect and classify highway cracks,” Journal of Engineering, Design and Technology, 20 (4) (2022) [Google Scholar]
  19. F. Wang et al., Emotion recognition with convolutional neural network and EEG- based EFDMs, Neuropsychologia, 146, p. 107506 (2020) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.