Open Access
Issue
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
Article Number 02019
Number of page(s) 9
Section Renewable Energy & Electrical Technology
DOI https://doi.org/10.1051/e3sconf/202340502019
Published online 26 July 2023
  1. A. A. Khan, A. Jamil, D. Hussain, M. Taj, G. Jabeen, M. K. Malik, Machine-Learning Algorithms for Mapping Debris-Covered Glaciers: The Hunza Basin Case Study, IEEE Access, 8, 12725–12734 (2020) [Google Scholar]
  2. A.E. Racoviteanu, K. Rittger R. Armstrong, An automated approach for estimating snowline altitudes in the Karakoram and eastern Himalaya from remote sensing, Frontiers in Earth Science, 7, 220 (2019) [CrossRef] [Google Scholar]
  3. Y. Lu, Z. Zhang, D. Huang, Glacier Mapping Based on Random Forest Algorithm: A Case Study over the Eastern Pamir, Water 12, 11 (2020) [Google Scholar]
  4. S. Sharda, M. Srivastava, HS. Gusain, K. Sharma et al. A hybrid machine learning technique for feature optimization in object-based classification of debris-covered glaciers, Ain Shams Engineering Journal 13, 6 (2022) [Google Scholar]
  5. P. Friedl, F. Weiser, A. Fluhrer, M.H. Braun, Remote sensing of glacier and ice sheet grounding lines: A review Earth-Science Reviews 201 (2020) [Google Scholar]
  6. M.T. Anees, N. Akhtar, A.F.B.A. Bakar, M.I.S. Ishak, A Review on the Estimation of Glacial Lake Outburst Floods (GLOFs) in the Himalayan Region Using Remote Sensing and Geographic Information System, Disaster Management in the Complex Himalayan Terrains: Natural Hazard Management, Methodologies and Policy Implications 93–107, (2022) [Google Scholar]
  7. Nongthombam, Kiranbala, and Deepika Sharma, Data Analysis using Python, International Journal of Engineering Research & Technology (IJERT) (2021) [Google Scholar]
  8. K. Kruse, C.B. Hug, J.M. Vaquerizas, FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data, Genome biology 21, 1, 1–19 (2020) [CrossRef] [Google Scholar]
  9. P.G. Poličar, M. Stražar, B. Zupan, openTSNE: a modular Python library for t-SNE dimensionality reduction and embedding, BioRxiv (2019) [Google Scholar]
  10. Y. Lu, Z. Zhang, D. Shangguan, J. Yang, Novel machine learning method integrating ensemble learning and deep learning for mapping debris-covered glaciers, Remote Sensing 13, 13 (2021) [Google Scholar]
  11. S. Ambinakudige, A. Intsiful, Estimation of area and volume change in the glaciers of the Columbia Icefield, Canada using machine learning algorithms and Landsat images, Remote Sensing Applications: Society and Environment 26 (2022) [Google Scholar]
  12. A. Ohmura, Completing the world glacier inventory, Annals of Glaciology 50, 53, 144–148 (2009) [CrossRef] [Google Scholar]
  13. T.T. Hybl, G. Scharfen, M. Holm, Glacier monitoring and the National Snow and Ice Data Center, in Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, (Cat. No. 00CH37120), 3, 1143–1144. IEEE (2000) [Google Scholar]
  14. D.K. Mankoff et al. Greenland Ice Sheet solid ice discharge from 1986 through March 2020, Earth System Science Data 12, 2 (2020) [Google Scholar]
  15. S. Kumari, M. Anirban, A comprehensive appraisal on the effect of aerosol on mountain glaciers: special reference to Sikkim Himalayan region of India, Sādhanā 48, 2 (2023) [Google Scholar]
  16. Z. Kokalj, M. Somrak, Why not a single image? Combining visualizations to facilitate fieldwork and on-screen mapping, Remote Sensing 11, 7 (2019) [Google Scholar]
  17. B.C. Eddine, LSTM Model for the Prediction of PM2. 5 Concentration in city of Algiers, PhD diss., University of Badji Mokhtar. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.