Open Access
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
Article Number 04025
Number of page(s) 9
Section Sustainable Technologies in Construction & Environmental Engineering
Published online 26 July 2023
  1. Statista Research Department, “Container Shipping - Statistics & Facts | Statista.” [Online]. Available: [Accessed: 29-May-2020]. [Google Scholar]
  2. Veenstra, R. Zuidwijk, and E. Van Asperen, “The extended gate concept for container terminals: Expanding the notion of dry ports,” Marit. Econ. Logist., vol. 14, no. 1, pp. 14–32, Mar. 2012. [CrossRef] [Google Scholar]
  3. F. A. Vis and R. De Koster, “Transshipment of containers at a container terminal: An overview,” Eur. J. Oper. Res., vol. 147, no. 1, pp. 1–16, May 2003. [CrossRef] [Google Scholar]
  4. M. A. Budiyanto and H. Fernanda, “Risk assessment of work accident in container terminals using the fault tree analysis method,” J. Mar. Sci. Eng., vol. 8, no. 6, 2020. [Google Scholar]
  5. H. O. Günther and K. H. Kim, “Container terminals and terminal operations,” OR Spectrum, vol. 28, no. 4. Springer, pp. 437–445, 13-Oct-2006. [CrossRef] [Google Scholar]
  6. C. L. Li and G. L. Vairaktarakis, “Loading and unloading operations in container terminals,” IIE Trans. (Institute Ind. Eng., vol. 36, no. 4, pp. 287–297, Apr. 2004. [Google Scholar]
  7. H. J. Carlo, I. F. A. Vis, and K. J. Roodbergen, “Transport operations in container terminals: Literature overview, trends, research directions and classification scheme,” European Journal of Operational Research, vol. 236, no. 1. North-Holland, pp. 1–13, 01-Jul-2014. [CrossRef] [Google Scholar]
  8. M. H. Huzaifi, M. A. Budiyanto, and S. J. Sirait, “Study on the carbon emission evaluation in a container port based on energy consumption data,” Evergreen, vol. 7, no. 1, pp. 97–103, Mar. 2020. [CrossRef] [Google Scholar]
  9. C. Rijsenbrij and A. Wieschemann, “Sustainable container terminals: A design approach,” Oper. Res. Comput. Sci. Interfaces Ser., vol. 49, no. 1, pp. 61–82, 2011. [Google Scholar]
  10. M. A. Budiyanto, M. H. Huzaifi, and S. J. Sirait, “Estimating of CO2 Emissions in a container port based on modality movement in the terminal area,” Int. J. Technol., vol. 10, no. 8, pp. 1618–1625, Dec. 2019. [CrossRef] [Google Scholar]
  11. H. Y. Bae, R. Choe, T. Park, and K. R. Ryu, “Comparison of operations of AGVs and ALVs in an automated container terminal,” in Journal of Intelligent Manufacturing, 2011, vol. 22, no. 3, pp. 413–426. [CrossRef] [Google Scholar]
  12. C. I. Liu, H. Jula, and P. A. Ioannou, “Design, Simulation, and Evaluation of Automated Container Terminals,” IEEE Trans. Intell. Transp. Syst., vol. 3, no. 1, pp. 12–26, Mar. 2002. [CrossRef] [Google Scholar]
  13. M. A. Budiyanto, Nasruddin, and F. Zhafari, “Simulation study using building-design energy analysis to estimate energy consumption of refrigerated container,” Energy Procedia, vol. 156, pp. 207–211, Jan. 2019. [CrossRef] [Google Scholar]
  14. M. A. Budiyanto, Sunaryo, H. Fernanda, and T. Shinoda, “Effect of azimuth angle on the energy consumption of refrigerated container,” Energy Procedia, vol. 156, pp. 201–206, Jan. 2019. [CrossRef] [Google Scholar]
  15. M. A. Budiyanto and T. Shinoda, “Energy efficiency on the reefer container storage yard; an analysis of thermal performance of installation roof shade,” in Energy Reports, 2020, vol. 6, pp. 686–692. [CrossRef] [Google Scholar]
  16. M. A. Budiyanto and T. Shinoda, “Stack effect on power consumption of refrigerated containers in storage yards,” Int. J. Technol., vol. 8, no. 7, 2017. [Google Scholar]
  17. Jeevan, H. Ghaderi, Y. M. Bandara, A. H. Saharuddin, and M. R. Othman, “The Implications of the Growth of Port Throughput on the Port Capacity: the Case of Malaysian Major Container Seaports,” Int. J. e-Navigation Marit. Econ., vol. 3, pp. 84–98, Dec. 2015. [Google Scholar]
  18. H. I. Nur, C. Boyke, S. Permana, T. Achmadi, E. W. Ardhi, and A. Mustakim, “Study of Container Dwelling Time in Indonesia: Current Condition & Challenge,” 2019. [Google Scholar]
  19. De, S. Pratap, A. Kumar, and M. K. Tiwari, “A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach,” Ann. Oper. Res., pp. 1–29, Oct. 2018. [Google Scholar]
  20. W. C. Ng, K. L. Mak, and Y. X. Zhang, “Scheduling trucks in container terminals using a genetic algorithm,” Eng. Optim., vol. 39, no. 1, pp. 33–47, Jan. 2007. [CrossRef] [Google Scholar]
  21. S. M. Homayouni, S. H. Tang, and O. Motlagh, “A genetic algorithm for optimization of integrated scheduling of cranes, vehicles, and storage platforms at automated container terminals,” J. Comput. Appl. Math., vol. 270, pp. 545–556, Nov. 2014. [CrossRef] [Google Scholar]
  22. F. Meisel and C. Bierwirth, “Heuristics for the integration of crane productivity in the berth allocation problem,” Transp. Res. Part E Logist. Transp. Rev., vol. 45, no. 1, pp. 196–209, Jan. 2009. [CrossRef] [Google Scholar]
  23. Y. M. Park and K. H. Kim, “A scheduling method for Berth and Quay cranes,” OR Spectr., vol. 25, no. 1, pp. 1–23, 2003. [CrossRef] [Google Scholar]
  24. Imai, X. Sun, E. Nishimura, and S. Papadimitriou, “Berth allocation in a container port: Using a continuous location space approach,” Transp. Res. Part B Methodol., vol. 39, no. 3, pp. 199–221, Mar. 2005. [CrossRef] [Google Scholar]
  25. J. F. Cordeau, G. Laporte, P. Legato, and L. Moccia, “Models and tabu search heuristics for the berth-allocation problem,” Transp. Sci., vol. 39, no. 4, pp. 526–538, 2005. [CrossRef] [Google Scholar]
  26. G. S. Fishman, Discrete-event simulation : modeling, programming, and analysis. Springer, 2001. [Google Scholar]
  27. Moffatt & Nichol, “FlexSim CT is now FlexTerm | FlexSim.” [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.