Open Access
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
Article Number 04026
Number of page(s) 11
Section Sustainable Technologies in Construction & Environmental Engineering
Published online 26 July 2023
  1. Rashidi, H., Ghaffarian Hoseini, A., Ghaffarian Hoseini, A., Sulaiman, N. M. N., Tookey, J., & Hashim, N. A. (2015). Application of wastewater treatment in sustainable design of green built environments: A review. Renewable and Sustainable Energy Reviews, 49, 845-856. [CrossRef] [Google Scholar]
  2. 2.Akpor, O. B., & Muchie, B. (2011). Environmental and public health implications of wastewater quality. African Journal of Biotechnology, 10(13), 2379-2387. [Google Scholar]
  3. Zhang, S., Wang, J., Zhang, Y., Ma, J., Huang, L., Yu, S. & Wang, X. (2021). Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. Environmental Pollution, 291, 118076. [CrossRef] [Google Scholar]
  4. Zamel, D., Hassanin, A. H., Ellethy, R., Singer, G., & Abdelmoneim, A. (2019). Novel bacteria-immobilized cellulose acetate/poly (ethylene oxide) nanofibrous membrane for wastewater treatment. Scientific reports, 9(1), 18994. [CrossRef] [PubMed] [Google Scholar]
  5. Etim, E. E. (2012). Phytoremediation and its mechanisms: a review. Int J Environ Bioenergy, 2(3), 120-136. [Google Scholar]
  6. Jeevanantham, S., Saravanan, A., Hemavathy, R. V., Kumar, P. S., Yaashikaa, P. R., & Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environmental technology & innovation, 13, 264-276. [CrossRef] [Google Scholar]
  7. Zamel, D., & Khan, A. U. (2021). Bacterial immobilization on cellulose acetate based nanofibers for methylene blue removal from wastewater: Mini-review. Inorganic Chemistry Communications, 131, 108766. [CrossRef] [Google Scholar]
  8. Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Khraisheh, M., & Atieh, M. A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, 141-161. [CrossRef] [Google Scholar]
  9. Malik, D. S., Jain, C. K., & Yadav, A. K. (2017). Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Applied water science, 7, 2113-2136. [CrossRef] [Google Scholar]
  10. Kurade, M. B., Ha, Y. H., Xiong, J. Q., Govindwar, S. P., Jang, M., & Jeon, B. H. (2021). Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment. Chemical Engineering Journal, 415, 129040. [CrossRef] [Google Scholar]
  11. Álvarez, J. A., Ávila, C., Otter, P., Kilian, R., Istenič, D., Rolletschek, M. & Arias, C. A. (2017). Constructed wetlands and solar-driven disinfection technologies for sustainable wastewater treatment and reclamation in rural India: SWINGS project. Water Science and Technology, 76(6), 1474-1489. [CrossRef] [PubMed] [Google Scholar]
  12. Deutsche gesellschaft für internationale zusammenarbeit gmbh (GIZ). (2011). Technology review of constructed wetlands: subsurface flow constructed wetlands for greywater and domestic wastewater treatment. Sustainable sanitation-ecosan program. [Google Scholar]
  13. DeNooyer, T. A., Peschel, J. M., Zhang, Z., & Stillwell, A. S. (2016). Integrating water resources and power generation: The energy–water nexus in Illinois. Applied energy, 162, 363-371. [CrossRef] [Google Scholar]
  14. Istenic, D., Bodík, I., & Bulc, T. (2015). Status of decentralised wastewater treatment systems and barriers for implementation of nature-based systems in central and eastern Europe. Environmental Science and Pollution Research, 22, 12879-12884. [CrossRef] [PubMed] [Google Scholar]
  15. Imam, S. (2017). Phytoremediation: a green method to combat environmental pollution. IJESRT, 6, 418-421. [Google Scholar]
  16. Niharika, S., Anita, G., Rajesh, V., Shyam, P., Vinay, M., & Kavit, S. (2019). Heavy metals uptake by AlceaRosea (Holly hock) using phytoremediation technology. Res. J. Chem. Environ, 23(6), 134-37. [Google Scholar]
  17. Khan, X. U., & Khalil, N. (2017). Constructed Wetlands for Domestic Wastewater Treatment–A Promising Technology for Rural Areas in India. International Journal of Engineering Technology Science and Research, 4(6). [Google Scholar]
  18. Vymazal, J., & Kröpfelová, L. (2015). Multistage hybrid constructed wetland for enhanced removal of nitrogen. Ecological Engineering, 84, 202-208. [CrossRef] [Google Scholar]
  19. Biswal, B., Singh, S. K., Patra, A., & Mohapatra, K. K. (2022). Evaluation of phytoremediation capability of French marigold (Tagetes patula) and African marigold (Tagetes erecta) under heavy metals contaminated soils. International Journal of Phytoremediation, 24(9), 945-954. [CrossRef] [PubMed] [Google Scholar]
  20. Vymazal, J. (2009). The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological engineering, 35(1), 1-17. [CrossRef] [Google Scholar]
  21. Tilak, A. S., Wani, S. P., Patil, M. D., & Datta, A. (2016). Evaluating wastewater treatment efficiency of two field scale subsurface flow constructed wetlands. Current Science, 1764-1772. [Google Scholar]
  22. Sudarsan, J. S., Roy, R. L., Baskar, G., Deeptha, V. T., & Nithiyanantham, S. (2015). Domestic wastewater treatment performance using constructed wetland. Sustainable Water Resources Management, 1, 89-96. [CrossRef] [Google Scholar]
  23. El-Khateeb, M. A., Kamel, M., Megahed, R., & Abdel-Shafy, E. (2016). Sewage water treatment using constructed wetland with different designs. Pollut Res, 35(1), 197-201. [Google Scholar]
  24. Machado, A. I., Beretta, M., Fragoso, R., & Duarte, E. D. C. N. F. D. A. (2017). Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. Journal of environmental management, 187, 560-570. [CrossRef] [PubMed] [Google Scholar]
  25. Selvamurugan, M., Doraisamy, P., Maheswari, M., & Akumar, N. B. (2011). Constructed wetlands for wastewater treatment: a review. Research & Reviews in BioSciences, 5(2), 100-105. [Google Scholar]
  26. Shivhare, Niharika, & Roy, Momita, (2013). Gravel bed constructed wetland for treatment of sewage water. Pollution Research, 32(2), 415-419. [Google Scholar]
  27. Kallimani, K. S., Virupakshi, A. S., Tech, M., & Sheshgiri, K. L. E. M. S. (2015). Comparison study on treatment of campus wastewater by constructed wetlands using Canna indica & Phragmites austrails plants. Research Journal of Engineering and Technology, 2(9), 44-50. [Google Scholar]
  28. Jethwa, K., & Bajpai, S. (2016). Role of plants in constructed wetlands (CWS): a review. J. Chem. Pharm. Sci, 2, 4-10. [Google Scholar]
  29. Kouki, S., Saidi, N., Rajeb, A. B., & M’hiri, F. (2012). Potential of a polyculture of Arundo donax and Typha latifolia for growth and phytotreatment of wastewater pollution. African Journal of Biotechnology, 11(87), 15341-15352. [Google Scholar]
  30. Liu, H., Hu, Z., Zhang, J., Ngo, H. H., Guo, W., Liang, S. & Wu, H. (2016). Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: a review. Bioresource Technology, 214, 797-805. [CrossRef] [PubMed] [Google Scholar]
  31. Pelissari, C., Guivernau, M., Viñas, M., de Souza, S. S., García, J., Sezerino, P. H., & Ávila, C. (2017). Unraveling the active microbial populations involved in nitrogen utilization in a vertical subsurface flow constructed wetland treating urban wastewater. Science of the total environment, 584, 642-650. [CrossRef] [Google Scholar]
  32. Rai, U. N., Upadhyay, A. K., Singh, N. K., Dwivedi, S., & Tripathi, R. D. (2015). Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecological engineering, 81, 115-122. [CrossRef] [Google Scholar]
  33. Torrijos, V., Gonzalo, O. G., Trueba-Santiso, A., Ruiz, I., & Soto, M. (2016). Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment. Water research, 103, 92-100. [CrossRef] [PubMed] [Google Scholar]
  34. Dhoble, Y. N., & Ahmed, S. (2018). Sustainability of wastewater treatment in subtropical region: aerobic vs anaerobic process. Int J Eng Res Dev, 14(1), 51-66. [Google Scholar]
  35. Vijay, M. V., Sudarsan, J. S., & Nithiyanantham, S. (2017). Sustainability of constructed wetlands in using biochar for treating wastewater. Rasayan Journal of Chemistry, 10(3), 1056-1061. [Google Scholar]
  36. Haberl, R. (1999). Constructed wetlands: a chance to solve wastewater problems in developing countries. Water Science and Technology, 40(3), 11-17. [CrossRef] [Google Scholar]
  37. Cooper, P. (1999). A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Science and Technology, 40(3), 1-9. [CrossRef] [Google Scholar]
  38. Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water science and technology, 35(5), 11-17. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.