Open Access
Issue
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
Article Number 04044
Number of page(s) 14
Section Sustainable Technologies in Construction & Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202340504044
Published online 26 July 2023
  1. S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep Learning Convolutional Neural Networks for Radio Identification,” IEEE Commun. Mag., vol. 56, no. 9, pp. 146– 152, 2018, doi: 10.1109/MCOM.2018.1800153. [CrossRef] [Google Scholar]
  2. Jeremy Howard and Sylvain Gugger, “fastai: A layered API for Deep Learning”, CoRR, 2020. [Google Scholar]
  3. Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun, “Deep Residual Learning for Image Recognition” in arXiv 1512.03385, 2015 [Google Scholar]
  4. Kadhim, Mohammed, Abed, Mohammed, “Convolutional Neural Network for Satellite Image Classifica-tion”, Studies in Computational Intelligence 10.1007/978-3-030-14132-5-13., 2020. [Google Scholar]
  5. Zhong, Yanfei Fei, Feng Liu, Yanfei Zhao, Bei Hongzan, Jiao Zhang, Liangpei, “SatCNN: satellite image dataset classification using agile convolutional neural networks.”, Remote Sensing Letters, 8. 136-145. 10.1080/2150704X.2016.1235299, 2017 [CrossRef] [Google Scholar]
  6. Yulang Chen, Jingmin Gao, Kebei Zhang, “R-CNN-Based Satellite Components Detection in Optical Im-ages”, International Journal of Aerospace Engineering, vol.2020, Article-ID- 8816187, 10 pages, 2020. https://doi.org/10.1155/2020/8816187 [Google Scholar]
  7. Karen Simonyan Andrew Zisserman, “ Very Deep Convolutional Networks For Large-scale image recognition”, ArXiv 1409.1556., 2014. [Google Scholar]
  8. Saikat Basu, Sangram Ganguly, Supratik Mukhopadhyay, Robert DiBiano, Manohar Karki, and Ramakrishna R. Nemani. 2015. DeepSat - A Learning framework for Satellite Imagery. CoRR abs/1509.03602 (2015). [Google Scholar]
  9. Marco Castelluccio, Giovanni Poggi, Carlo Sansone, and Luisa Verdoliva. 2015. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. CoRR abs/ 1508.00092 (2015). http://arxiv.org/abs/1508.00092 [Google Scholar]
  10. Chen, C., Zhang, B., Su, H., Li, W., Wang, L.: Land-use scene classification using multi- scale completed local binary patterns. Signal Image Video Process. 10(4), 745–752 (2016) [CrossRef] [Google Scholar]
  11. Albert, A., Kaur, J., Gonzalez, M.: Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. In: Proceeding of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining pp. 1357– 1366 (2017) [Google Scholar]
  12. D. C. Cires ̧an, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber, “Flexible, high performance convolutional neural networks for image classification,” in Proceedings of the 22nd International Joint Conference on Artificial Intelligence, vol. 2, pp. 1237–1242, 2011. [Google Scholar]
  13. Zeiler, Matthew Fergus, Rob, “Stochastic Pooling for Regularization of Deep Convolutional Neural Net-works”, ICLR, 2013. [Google Scholar]
  14. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural net-works by preventing co-adaptation of feature detectors”, CoRR, abs/1207.0580, 2012. [Google Scholar]
  15. C. Szegedy et al., “Going deeper with convolutions,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1-9 [Google Scholar]
  16. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet classification with deep convolutional neural networks”, Advances in Neural Information Processing Systems, 2012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.