Open Access
Issue
E3S Web of Conf.
Volume 410, 2023
XXVI International Scientific Conference “Construction the Formation of Living Environment” (FORM-2023)
Article Number 01016
Number of page(s) 8
Section Modern Building Materials
DOI https://doi.org/10.1051/e3sconf/202341001016
Published online 09 August 2023
  1. Sintez i izuchenie svoistv opticheski chuvstvitel’nykh materialov. Sbornik nauchnykh trudov pod obchshey redaktsiey professora, d.t.n. G.L. Khesina i professora, d.kh.n. A.A. Askadskogo. MISI im. V.V. Kuybysheva, M. 1987, p. 220. (in Russian). [Google Scholar]
  2. Szczurowski Marcin K., Martynkien Tadeusz, Statkiewicz-Barabach Gabriela, Urbanczyk Waclaw, Khan Lutful, and Webb David J. Measurements of stress-optic coefficient in polymer optical fibers. Optics Letters, 2010, Vol. 35, No 12, pp. 2013-2015. [CrossRef] [PubMed] [Google Scholar]
  3. Ohkita, H., Ishibashi, K., Tsurumoto, D., Tagaya A., Koike, Y., Compensation of the photoelastic birefringence of a polymer by doping with an anisotropic molecule, Applied Physics A: Materials Science and Processing, 2005, V. 81, pp. 617-620. [CrossRef] [Google Scholar]
  4. Koyama, T., Zhu, Y., Otsuka, T., Takada, T., Murooka, Y., An automatic measurement system for 2-dimensional birefringence vector distribution, Proc. IEEE, 1998, pp. 557-560. [Google Scholar]
  5. Xu, W., Yao, X. F., Yeh, H. Y., Jin, G. C., Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology, Polymer Testing, 2005, V. 24, pp. 900 – 908. [CrossRef] [Google Scholar]
  6. Waxler, R.M., Horowitz D., Feldman A., Optical and physical parameters of Plexiglas 55 and Lexan, Applied Optics, 1979, V. 18, pp. 101 – 104 (1979). [Google Scholar]
  7. Lee Y.C., Liu T.S., Wu C.I., Lin W.Y. Investigation on residual stress and stress-optical coefficient for flexible electronics by photoelasticity. Measurement, 2012, V. 45, pp. 311-316. [CrossRef] [Google Scholar]
  8. Fiber Optic Sensors. An Introduction for Engineers and Scientists. Edited by Eric Udd. 2006, bу John Wiley & Sons, lnc., pp. 518. [Google Scholar]
  9. D.W. van Krevelen, Klaas te Nijenhuis Elsevier, 2009. Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions, pp. 1030. [Google Scholar]
  10. Jong Sun Kim, Kyung Hwan Yoon, Julia A. Konfield. Measurement of stress-optical coefficient of COCs with different composition. 2006. Key Engineering Materials, Vols. 326-328, pp. 183-186. [CrossRef] [Google Scholar]
  11. Yi-Fan Z, Jiao R, Li-Juan L, Li-Yang Z, Dan-Dan Z, Jian G, Jun-Wen X, and Qi C. Measurement of Stress Optical Coefficient for Silicone Adhesive Based on Terahertz Time Domain Spectroscopy Photonics 2022, 9(12), 929 [Google Scholar]
  12. Markus Stoehr, Gerald Gerlach, Thomas Härtling, and Stephan Schoenfelder Analysis of photoelastic properties of monocrystalline silicon J. Sens. Sens. Syst., 2020, 9, 209–217 [CrossRef] [Google Scholar]
  13. Inki Min and Kyunghwan Yoon Dynamic measurement of stress optical behavior of three amorphous polymers Korea-Australia Rheology Journal Korea-Australia Rheology Journal Vol. 24, No. 1, March 2012 pp. 73-79 [Google Scholar]
  14. Askadskii A.A., Prozorova S.N., Slonimskii G.L. Optiko-mekhanicheskie svoistva aromaticheskikh teplostoikikh polimerov. Vysokomolek. Soedin., T. 18, Seriya A, No 3, pp. 636-647 (1976). (In Russian). [Google Scholar]
  15. Askadskii A.A., Marshalkovich A.S., Matveeva T.P. Prognozirovanie optiko-mekhanicheskikh svoistv polimerov, primenyaemykh v metode fotouprugosti. Mekhanika kompozitnykh materialov, 1983, No 3, pp. 906-913. (in Russian). [Google Scholar]
  16. Askadskii A.A., Pastukhov A.V., Marshalkovich A.S. Prognozirovanie nekotorykh fizicheskikh kharakteristik i poluchenie opticheski chuvstvitel’nykh epoksidnykh polimerov. Vysokomolek. soedin. Ser. A, 1984, T. 26, No 1, pp. 160-171. (in Russian). [Google Scholar]
  17. Matveeva T.P., Matveev Yu.I., Askadskii A.A. Opredelenie uprugikh kharakteristik polimerov iskhodya iz khimicheskogo stroeniya povtoryayuchshegosya zvena. Mekhanika kompozitnykh materialov, 1986, No 2, pp. 201-206. (in Russian). [Google Scholar]
  18. Landau L.D., Lifshits E.M. Teoreticheskaya phizika. T.8. Electrodinamica sploshnukh sred. Izdanie 2-e, ispravlennoe I dopolnennoe E.M. Lifshitsem i L.P. Piotrovskim. M.: Nauka. 1982. 623 p. (in Russian). [Google Scholar]
  19. Landau L.D., Lifshits E.M. Teoreticheskaya phizika. T.7. Teoriya uprugosti. Izdanie 4-e, ispravlennoe I dopolnennoe. M.: Nauka. 1987. 246 p. (in Russian). [Google Scholar]
  20. Askadskii A.A. Computational Materials Science of Polymers. Cambridge International Science Publishing. 2003. 695 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.