Open Access
Issue |
E3S Web of Conf.
Volume 410, 2023
XXVI International Scientific Conference “Construction the Formation of Living Environment” (FORM-2023)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 8 | |
Section | Modelling and Mechanics of Building Structures | |
DOI | https://doi.org/10.1051/e3sconf/202341003009 | |
Published online | 09 August 2023 |
- Reich, Y. Machine Learning Techniques for Civil Engineering Problems, Microcomputers in Civil Engineering 12 (1997) 295–310. [CrossRef] [Google Scholar]
- Salehi H, Burgueño R. Emerging artificial intelligence methods in structural engineering. Engineering Structures 2018; 171: 170-189. [CrossRef] [Google Scholar]
- Huang H, Xue CL, Zhang W, Guo MX. Torsion design of CFRP-CFST columns using a data-driven optimization approach. Engineering Structures 2022, 251 (part A): 113479. [CrossRef] [Google Scholar]
- Alves, V., Cury, A., Roitman, N., Magluta, C., Cremona, C., Structural modification assessment using supervised learning methods applied to vibration data, Engineering Structures 99 (2015) 439–448. [CrossRef] [Google Scholar]
- Liu, W. Z. & White, A. P., The importance of attribute selection measures in decision tree induction, Machine Learning, 15 (1) (1994), 25–41. [Google Scholar]
- Mingers, J., An empirical comparison of pruning methods for decision-tree induction, Machine Learning, 4 (2) (1989b), 227–43. [CrossRef] [Google Scholar]
- Ataei N, Padgett JE. Fragility surrogate models for coastal bridges in hurricane prone zones. Eng Struct 2015;103:203–13. [CrossRef] [Google Scholar]
- Gong L, Wang C, Wu F, Zhang J, Zhang H, Li Q. Earthquake-induced building damage detection with post-event sub-meter vhr terrasar-X staring spotlight imagery. Remote Sens 2016;8:887. [CrossRef] [Google Scholar]
- Mitchell, T. M. (1997). Machine learning [Google Scholar]
- Ian Goodfellow, Ian, Deep learning //Ian Goodfellow, Yoshua Bengio, and Aaron Courville.[ISBN 9780262035613 ] [Google Scholar]
- L. Breiman. Bagging predictors. Machine Learning (1996); 26(2): 123-140. [Google Scholar]
- Y. Amrani, M Lazaar, K Kadiri. Random forest and support vector machine based hybrid approach to sentiment analysis. Procedia Computer Science (2018); 127: 511-520. [CrossRef] [Google Scholar]
- Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119–139. [CrossRef] [Google Scholar]
- T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, Knowl. Discov. Data Min. (2016) 785–794. https://doi.org/10.1145/2939672.2939785. [Google Scholar]
- Thai HT, Kim SE. Practical advanced analysis software for nonlinear inelastic analysis of space steel structures. Advances in Engineering Software (2009); 40(9): 786-797. [CrossRef] [Google Scholar]
- Kim SE, Lee JH. Improved refined plastic-hinge analysis accounting for lateral torsional buckling. J. Constr. Steel Res. (2002); 58(11): 1431-1453. [CrossRef] [Google Scholar]
- Chen WF, Lui EM. Stability design of steel frames. Boca Raton, FL: CRC Press, 1992. [Google Scholar]
- Orbison JG, McGuire W, Abel JF. Yield surface applications in nonlinear steel frame analysis. Comput. Methods Appl. Mech. Eng. (1982); 33(1): 557–573. [CrossRef] [Google Scholar]
- Chen WF, Kim SE, Choi SH. Practical second-order inelastic analysis for three-dimensional steel frames. Steel Structures (2001); 1(3): 213-223. [CrossRef] [Google Scholar]
- Yang YB, Shieh MS. Solution method for nonlinear problems with multiple critical points. AIAA J (1990); 28(12):2110-2116. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.