Open Access
Issue
E3S Web of Conf.
Volume 410, 2023
XXVI International Scientific Conference “Construction the Formation of Living Environment” (FORM-2023)
Article Number 03010
Number of page(s) 8
Section Modelling and Mechanics of Building Structures
DOI https://doi.org/10.1051/e3sconf/202341003010
Published online 09 August 2023
  1. M. M. Ali and K. S. Moon. Structural Developments in Tall Buildings: Current Trends and Future Prospects, Archit Sci Rev, vol. 50, no. 3, pp. 205–223, (2007), [CrossRef] [Google Scholar]
  2. M. I. Shah, S. v Mevada, and V. B. Patel, Comparative Study of Diagrid Structures with Conventional Frame Structures, Int. J. E. Res. & Apps vol. 6, 5, p. 22–29, (2016). [Google Scholar]
  3. C. J. Almeida, F. M. Conde, P. G. Coelho, and T. L. Pratas, Stiffness and strength-based lightweight design of Truss structures using multi-material topology optimization, in 9th International Conference on Computational Methods for Coupled Problems in Science and Engineering, (2021). doi: 10.23967/coupled.2021.052. [Google Scholar]
  4. P. A. Irwin, “Wind engineering challenges of the new generation of super-tall buildings,” Jnl. Wind E& Ind Aerod. vol. 97, no. 7–8, pp. 328–334, (2009), doi: 10.1016/j.jweia.2009.05.001. [CrossRef] [Google Scholar]
  5. P. Biswas and J. Peronto, Design and performance of tall buildings for wind. American Society of Civil Engineers (ASCE), (2020). doi: 10.1061/9780784415658. [Google Scholar]
  6. Md. Mashfiqul Islam and Shafiqul Islam, “Analysis on the Structural Systems for Drift Control of Tall Buildings due to Wind Load: Critical Investigation on Building Heights,” vol. 5, no. 2, pp. 84–94, (2014). [Google Scholar]
  7. N. Longarini, L. Cabras, M. Zucca, S. Chapain, and A. M. Aly, “Structural Improvements for Tall Buildings under Wind Loads: Comparative Study,” Shock and Vibration, (2017), doi: 10.1155/2017/2031248. [Google Scholar]
  8. ASCE 7-05, American Society of Civil Engineers: Minimum design loads for buildings and other structures, (ASCE, Virginia, 2006). [Google Scholar]
  9. S. Mohare and H. S. Bai, “Comparative Behaviour of High-Rise Buildings with Diagrids and Shear Wall as Lateral Load Resisting System,” Int. J. Adv. Sci. Resear and E., vol. 3, no. Special Issue 1, pp. 376–382, (2017). [Google Scholar]
  10. G. P. Lamichhane and P. Giri, “Effect of joint stiffness and flexibility on the design of reinforced cement concrete structure,” Structural Mechanics of Engineering Constructions and Buildings, vol. 16, no. 1, pp. 22–30, (2020), [CrossRef] [Google Scholar]
  11. V. Baile, “Comparative Study of Diagrid, Simple Frame and various bracing systems, IJIRSET, vol. 6, 6, pp. 11967–11975, (2017), doi: 10.15680/IJIRSET.2017.0606286. [Google Scholar]
  12. S. M. Gupta, “Structural development of skyscrapers,” International journal of Advances in Mechanical and Civil Engineering, vol. 4, no. 3, pp. 6–10, (2017). [Google Scholar]
  13. Bryan Stafford Smith and Alex Coull, Tall Building Structures.pdf. (NY: JOHN WILEY & SONS, 1991). [Google Scholar]
  14. R. R. Ahirwar, “Effect of Shear Walls on Tall Buildings with Different Corner Configuration Subjected to Wind Loads,”, (2021), doi: 10.1007/978-981-16-6557-8. [Google Scholar]
  15. M. Gorji Azandariani, M. Gholhaki, M. A. Kafi, and T. Zirakian, “Study of effects of beam-column connection and column rigidity on the performance of SPSW system,” JOBE. vol. 33, (2021), doi: 10.1016/j.jobe.2020.101821. [Google Scholar]
  16. M. Singh et al., A review paper on appropriate location of shear in building to reduce reinforcement consumption by STAAD.PRO V8i, IJCRT, vol. 6, p. 2320–2882, (2018) [Google Scholar]
  17. M. Paknahad1, Alyaa. A. A.-A., F. Hejazi*2, A. Shahbazian1, and N.Ostovar1, Different configurations of cores and shear walls in tall buildings, in IOP Conf. Ser.: Earth Environ. Sci. 357 012005, (2019). doi: 10.1088/1755-1315/357/1/012005. [CrossRef] [Google Scholar]
  18. S. A. Modi, V. v Agrawal, and V. A. Arekar, “Parametric study of various Tube in tube structures P,” Int. J. Adv. R. E. Sci. and Tech. vol. 4, no. 5, (2017), Available at: https://www.researchgate.net/publication/333893598 [Google Scholar]
  19. S. Lavanya. T Sridhar R, “Dynamic Analysis of Tube-in Tube tall buildings,” IRJOET, vol. 4, no. 4, (2017), [Google Scholar]
  20. A. G. Khatri, R. Goud, and G. Awasthi, Performance of tube in tube structures: A review, in AIP Conference Proceedings, vol. 2158, Sep. (2019),. [Google Scholar]
  21. B. K. Smitha, “Comparative Study of Tube in Tube Structures and Tubed Mega Frames,” IJRTER. vol. 4, 6, pp. 18–26, (2018), doi: 10.23883/ijrter.2018.4312.9qata. [Google Scholar]
  22. A. A. C. I. Standard, ACI 318_14_American System. (2014). [Google Scholar]
  23. J. C. McCormac, R. H. BROWN, Design of Reinforced Concrete. Ed-9, (Wiley and Sons, NY, 2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.