Open Access
Issue
E3S Web of Conf.
Volume 410, 2023
XXVI International Scientific Conference “Construction the Formation of Living Environment” (FORM-2023)
Article Number 03034
Number of page(s) 13
Section Modelling and Mechanics of Building Structures
DOI https://doi.org/10.1051/e3sconf/202341003034
Published online 09 August 2023
  1. Ablyalimov O. S. (2018) Analysis of the efficiency of transportation work of 3VL80S electric locomotives at the Kattakurgan -Navoi section of the Uzbek railway. Journal “Modern technologies. System analysis. Modeling”. 2018, no. 4(60) рр. 70-79 DOI: 10.26731/1813-9108.2018.4(60).70-79. [Google Scholar]
  2. Ablyalimov O. S. (2021) Research of the efficiency of locomotive UzTE16M3 operation and tractive qualities of the rail track profile Marokand -Navoi line of Uzbek railway. Journal “Modern Problems of Russian Transport Complex”. 2021, Vol. 11, No. 1 pp. 18-28 DOI: 10.18503/2222-9396-2021-11-1-18-28. [Google Scholar]
  3. Ablyalimov O. S. (2016) The effectiveness evaluation of the diesellocomotives 3ТЕ10М utilization between Marokand -Kattakurgan on the Uzbek railways. Journal “Modern Problems of Russian Transport Complex”. 2016, Vol. 6, No. 2 pp. 16-22 DOI: 10.18503/2222-9396-2016-6-2-16-22. [Google Scholar]
  4. Grebennikov, N., Shapshal, A. (2023). Determination of Energy Consumption for Train Traction. In: Guda, A. (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-031-11058-0_13 [Google Scholar]
  5. Feng X, Zhang H, Ding Yo, Liu Zh, Peng H, Xu B (2013) A review study on traction energy saving of rail transport. Discrete Dyn Nat Soc. https://doi.org/10.1155/2013/156548 [Google Scholar]
  6. Sanchis IV, Zuriaga PS (2016) An energy-efficient metro speed profiles for energy savings: application to the Valencia metro. Transp Res Procedia 18:226–233. https://doi.org/10.1016/j.trpro.2016.12.031 [CrossRef] [Google Scholar]
  7. Tretyakov, E., Solovev, A., Belyaev, D. (2023). Developing a Decision Support System for the Electric Locomotive Driver to Eliminate Malfunctions En Route. In: Guda, A. (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-031-11058-0_44 [Google Scholar]
  8. Yin J, et al (2017) Research and development of automatic train operation for railway transportation systems: a survey. Transp Res Part C Emerg Technol 85:548–572. https://doi.org/10.1016/j.trc.2017.09.009 [CrossRef] [Google Scholar]
  9. Frilli A, et al (2016) Energetic optimization of regenerative braking for high-speed railway systems. Energy Conv Manag 129:200–215. https://doi.org/10.1016/j.enconman.2016.10.011 [CrossRef] [Google Scholar]
  10. Gu Q, Tang T, Ma F (2015) Energy-efficient train tracking operation based on multiple optimization models. IEEE Trans Intell Transp Syst 17(3):882–892. https://doi.org/10.1109/TITS.2015.2502609 [Google Scholar]
  11. Butyrkin, A., Gelis, V., Kulikova, E.(2023). Features of Application of Progressive Methods of Predictive Modeling for Solving Transport Tasks. In: Guda, A. (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-031-11058-0_92 [Google Scholar]
  12. Istomin, S., Bobrov, M. (2023). The Organization of Adaptive Control, Forecasting and Management of Electric Power Consumption of Electric Rolling Stock. In: Guda, (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-031-11058-0_154 [Google Scholar]
  13. IstominS, Perestenko A, Dang C (2018) Development of the system of visual of electric power consumption by electric rolling stock. MATEC Web Conf 239:01035. https://doi.org/10.1051/matecconf/201823901035 [CrossRef] [EDP Sciences] [Google Scholar]
  14. Istomin S (2018) The use of correlation and regression analysis for assessment of the energy effectiveness of the dc electric locomotives auxiliary equipment. MATEC Web Conf 239:01038. https://doi.org/10.1051/matecconf/201823901038 [CrossRef] [EDP Sciences] [Google Scholar]
  15. Istomin S (2020) Development of a system for electric power consumption control by electric rolling stock on traction tracks of locomotive depots. IOP Conf Ser Mat Sci Eng 918:012157. https://doi.org/10.1088/1757-899X/918/1/012157 [CrossRef] [Google Scholar]
  16. Montrone T, Pellegrini P, Nobili P (2017) Energy consumption minimization problem in a railway network. Transp Res Procedia 22:85–94. https://doi.org/10.1016/j.trpro.2017.03.013 [CrossRef] [Google Scholar]
  17. Montrone T, Pellegrini P, Nobili P (2018) Real-time energy consumption minimization in railway networks. Transp Res Part D Transp Environ 65:524–539. https://doi.org/10.1016/j.trd.2018.09.018 [CrossRef] [Google Scholar]
  18. Bekher, S., Kononov, D., Buynosov, A. (2023). Experimental Study of Dynamic Forces Acting on Wheel Pairs of Railway Rolling Stock in Operation. In: Guda, A. (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems, vol 510. Springer, Cham. https://doi.org/10.1007/978-3-031-11051-1_12 [Google Scholar]
  19. Manea I, Ene M, Girnita I et al (2021) Determination of wheel-rail interaction forces of railway vehicles for evaluation of safety against derailment at running on twisted tracks. In: Balthazar JM (ed) Vibration engineering and technology of machinery. Mechanisms and machine science, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-60694-7_11 [Google Scholar]
  20. Xu J, Ma Q, Zhao S et al (2021) Effect of wheel flat on dynamic wheel-rail impact in railway turnouts. Veh Syst Dyn. https://doi.org/10.1080/00423114.2021.1876888 [Google Scholar]
  21. Martincek I, Kacik D, Horak J (2021) Interferometric optical fiber sensor for monitoring of dynamic railway traffic. Opt Laser Technol 140:107069. https://doi.org/10.1016/j.optlastec.2021.107069 [CrossRef] [Google Scholar]
  22. Tursunov, N.K., Semin, A.E., Sanokulov, E.A. Study of desulfurization process of structural steel using solid slag mixtures and rare earth metals, (2016) Chernye Metally, (4), pp. 32-37. [Google Scholar]
  23. Tursunov N.K., Semin A. E., Kotelnikov G. I. Kinetic features of desulphurization process during steel melting in induction crucible furnace. Chernye Metally. 2017. No. 5. pp. 23–29. [Google Scholar]
  24. Tursunov N. K., Semin A. E., Sanokulov E. A. Study of dephosphoration and desulphurization processes in the smelting of 20GL steel in the induction crucible furnace with consequent ladle treatment using rare earth metals. Chernye Metally. 2017. No. 1. pp. 33–40. [Google Scholar]
  25. Otabek Toirovand Nodirjon Tursunov, “Development of production technology of rolling stock cast parts”, E3S Web of Conferences 264, 05013 (2021). https://doi.org/10.1051/e3sconf/202126405013. [CrossRef] [EDP Sciences] [Google Scholar]
  26. Ablyalimov O. S. (2020) The exploitation of the 3VL80S electric locomotives on the plain of railway district. Journal “ Universum: technical science”. 2020, Vol. 1, No. 7(76) pp. 59-67 DOI: 10.32743/UniTech.2020.76.7-1. [Google Scholar]
  27. Ablyalimov O. S. (2020) Energy efficiency analysis of traction rolling stock of railways. Journal “ Universum: technical science”. 2020, Vol. 1, No. 9(78) pp. 85-87 DOI: 10.32743/UniTech.2020.78.9-1. [Google Scholar]
  28. Ablyalimov, O., Khamidov, O., Domanov, K.(2023). Determination of Locomotive Traction Efficiency on the Section of Marokand-Kattakurgan of Uzbek Railway. In: Guda, A. (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems, vol 509. Springer, Cham. pp. 671-680 https://doi.org/10.1007/978-3-031-11058-0 67. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.