Open Access
Issue
E3S Web Conf.
Volume 412, 2023
International Conference on Innovation in Modern Applied Science, Environment, Energy and Earth Studies (ICIES’11 2023)
Article Number 01077
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202341201077
Published online 17 August 2023
  1. Le Caillec, Jean-Marc, Alya Itani, Didier Guriot, and Yves Rakotondratsimba. 2017. Stock picking by probability– possibility approaches. IEEE Transactions on Fuzzy Systems 25: 333–49. [CrossRef] [Google Scholar]
  2. Lefebvre, William, Gregoire Loeper, and Huyen Pham. 2020. Mean-variance portfolio selection with Tracking Error Penalization. Mathematics 8: 1915. [CrossRef] [Google Scholar]
  3. Li, Ting, Weiguo Zhang, and Weijun Xu. 2015. A fuzzy portfolio selection model with background risk. Applied Mathematics and Computation 256: 505–13. [Google Scholar]
  4. Lozza, Sergio Ortobelli, Enrico Angelelli, and Daniele Toninelli. 2011. Set-portfolio selection with the use of market stochastic bounds. Emerging Markets Finance and Trade 47: 5–24. [CrossRef] [Google Scholar]
  5. Ma, Yilin, Ruizhu Han, and Weizhing Wang. 2021. Portfolio optimization with return prediction using Deep Learning and machine learning. Expert Systems with Applications 165: 113973. [CrossRef] [Google Scholar]
  6. Markowitz, Harry. 1952. Portfolio selection*. The Journal of Finance 7: 77–91. [Google Scholar]
  7. Maronna, Ricardo A., Dougla Martin, and Víctor J. Yohai. 2006. Robust Statistics: Theory and Methods. Hoboken: John Wiley & Sons. [CrossRef] [Google Scholar]
  8. Maronna, Ricardo A., Douglas Martin, Victor J. Yohai, and Matías Salibián-Barrera. 2019. Robust Statistics Theory and Methods (with R). Hoboken: John Wiley & Sons. [Google Scholar]
  9. Mba, Jules Clement, Kofi Agyarko Ababio, and Samuel Kwaku Agyei. 2022. [Google Scholar]
  10. Markowitz mean-variance portfolio selection and optimization under a behavioral spectacle: New empirical evidence. International Journal of Financial Studies 10: 28. [Google Scholar]
  11. Miloševi´c, Nemanja, and Milos Rackovi´c. 2019. Classification based on missing features in deep convolutional neural networks. Neural Network World 29: 221–34. [CrossRef] [Google Scholar]
  12. Mitra Thakur, Gour Sundar, Rupak Bhattacharyya, and Seema Sarkar (Mondal). 2018. Stock portfolio selection using Dempster–Shafer Evidence theory. Journal of King Saud University-Computer and Information Sciences 30: 223–35. [CrossRef] [Google Scholar]
  13. Nguyen, Than Thi. 2014. Selection of the right risk measures for portfolio allocation. International Journal of Monetary Economics and Finance 7: 135. [CrossRef] [Google Scholar]
  14. Ortiz, Roberto, Mauricio Contreras, and Cristhian Mellado. 2021. Improving the volatility of the optimal weights of the Markowitz model. Economic Research-Ekonomska Istraživanja, September 29. [Google Scholar]
  15. Paiva, Felipe D., Rodrigo T. Cardoso, Gustova P. Hanaoka, and Wendel M. Duarte. 2019. Decision-making for financial trading: A fusion approach of machine learning and portfolio selection. Expert Systems with Applications 115: 635–55. [CrossRef] [Google Scholar]
  16. Rahiminezhad Galankashi, Masoud, Farimah Mokhatab Rafiei, and Maryam Ghezelbash. 2020. Portfolio selection: A fuzzy-ANP approach. Financial Innovation 6: 17. [CrossRef] [Google Scholar]
  17. Rather, Akhter M., Arun Agarwal, and V. N. Sastry. 2015. Recurrent neural network and a hybrid model for prediction of Stock returns. Expert Systems with Applications 42: 3234–41. [CrossRef] [Google Scholar]
  18. Sadouk, Lamyaa. 2019. CNN approaches for Time Series Classification. Time Series Analysis-Data, Methods, and Applications, November 5. [Google Scholar]
  19. Sharpe, William F., and Harry M. Markowitz. 1989. Mean-variance analysis in portfolio choice and capital markets. The Journal of Finance 44: 531. [CrossRef] [Google Scholar]
  20. Siami-Namini, Sima, Neda Tavakoli, and Akbar S. Namin. 2019. The performance of LSTM and BiLSTM in forecasting time series. Paper presented at 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, December 9–12. [Google Scholar]
  21. Sikalo, Mirza, Almira Arnaut-Berilo, and Azra Zaimovic. 2022. Efficient Asset Allocation: Application of game theory-based model for superior performance. International Journal of Financial Studies 10: 20. [CrossRef] [Google Scholar]
  22. Singh, Upma, Mohammad Rizwan, Muhannad Alaraj, and I. Alsaidan. 2021. A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards Smart Grid Environments. Energies 14: 5196. [CrossRef] [Google Scholar]
  23. Soeryana, E., N. Fadhlina, Sukono, E. Rusyaman, and S. Supian. 2017. Mean-variance portfolio optimization by using time series approaches based on logarithmic utility function. IOP Conference Series: Materials Science and Engineering 166: 012003. [CrossRef] [Google Scholar]
  24. Ta, Van-Dai, Chuan-Ming Liu, and Direselign A. Tadesse. 2020. Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences 10: 437. [CrossRef] [Google Scholar]
  25. Tu, Juntu, and Guofu Zhou. 2010. Incorporating economic objectives into bayesian priors: Portfolio choice under parameter uncertainty. Journal of Financial and Quantitative Analysis 45: 959–86. [CrossRef] [Google Scholar]
  26. Wan, Yuqing, Raymond Y. Lau, and Yain-Whar Si. 2020. Mining subsequent trend patterns from financial time series. International Journal of Wavelets, Multiresolution and Information Processing 18: 2050010. [CrossRef] [Google Scholar]
  27. Wang, Wuyu, Weizi Li, Ning Zhang, and Kecheng Liu. 2020. Portfolio formation with preselection using deep learning from long-term financial data. Expert Systems with Applications 143: 113042. [CrossRef] [Google Scholar]
  28. Yang, Mo, and Jing Wang. 2022. Adaptability of Financial Time Series prediction based on bilstm. Procedia Computer Science 199: 18–25. [CrossRef] [Google Scholar]
  29. Zaimovic, Azra, Adna Omanovic, and Almira Arnaut-Berilo. 2021. How many stocks are sufficient for equity portfolio diversification? A review of the literature. Journal of Risk and Financial Management 14: 551. [CrossRef] [Google Scholar]
  30. Khan, Ameer Tamoor, Xinwei Cao, Shuai Li, Bin Hu, and Vasilio N. Katsikis. 2021. Quantum beetle antennae search: A novel technique for the constrained portfolio optimization problem. Science China Information Sciences 64: 152204. [CrossRef] [Google Scholar]
  31. Khan, Ameer Tamoor, Xinwei Cao, Inova Brajevic, Predrag S. Stanimirovic, Vasilio N. Katsikis, and Shuai Li. 2022. Non-linear activated beetle antennae search: A novel technique for non-convex tax-aware portfolio optimization problem. Expert Systems with Applications 197: 116631. [CrossRef] [Google Scholar]
  32. Vineet Tirth, Ali Algahtani, Abdulaziz Alghtani, Tawfiq Al-Mughanam, and Kashif Irshad, 2023. Sustainable Nanomaterial-Based technologies for renewable energy production and efficient storage based on Machine learning. Techniques. [Google Scholar]
  33. U. Sakthi, T. AnilKumar, Kuraluka Vimala Kumar, Shamimul Qamar, Girish Kumar Sharma, and Abdul Azeem. 2023. Power grid based renewable energy analysis by photovoltaic cell machine learning architecture in wind energy ybridization. [Google Scholar]
  34. Martin János Mayer, Bence Biró, Botond Szücs, and Attila Aszódi. 2023. Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning. [Google Scholar]
  35. Rasha M. Abd El-Aziz. 2022, Renewable power source energy consumption by hybrid machine learning model. [Google Scholar]
  36. Milad Izanloo, Alireza Aslani, and Rahim Zahedi. 2022. Development of a Machine learning assessment method for renewable energy investment decision making. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.