Open Access
Issue |
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 9 | |
Section | Agricultural Engineering and Mechanization | |
DOI | https://doi.org/10.1051/e3sconf/202341302003 | |
Published online | 11 August 2023 |
- G. Molinari, A. F. Arrieta, P. Ermanni, Aero-structural optimization of three-dimensional adaptive wings with embedded smart actuators AIAA journal, 52(9), 1940-1951 (2014) doi: 10.2514/1.J052715 [Google Scholar]
- O. Mitrofanov, M. Osman, Designing of smooth composite panels providing stability and strength at postbuckling behavior Mechanics of composite materials, 58, 15-30 (2022) doi: http://dx.doi.org/10.1007/s11029-022-10008-3 [Google Scholar]
- K. A. Balunov, F. Z. Ishmuratov, S. A. Tuktarov, V. M. Uskov, Multidisciplinary aspects in research on the synthesis and optimization of structural layout of aircraft Scientific and technical conference «Strength of aircraft structures», 29-36 (2016) [Google Scholar]
- O. V. Tatarnikov, W. A. Phyo, L. A. Naing, Selection of the optimal structural de-sign of a spar composite wing BMSTU journal of mechanical engineering, 12, 90-99 (2021) doi: 10.18698/0536-1044-2021-12-90-99 [Google Scholar]
- A. V. Azarov, A. A. Babichev, A. F. Razin, Optimal design of an airplane wing composite lattice panel under axial compression Journal on composite mechanics and design, 26(4), 490-500 (2020) doi: 10.33113/mkmk.ras.2020.26.04.490_500.04 [Google Scholar]
- A. V. Azarov, V. A. Kolesnikov, A. R. Khaziev, Development of equipment for composite 3D printing of structural elements for aerospace applications IOP conference series: materi-als science and engineering, 934, 012049 (2020) doi:10.1088/1757-899X/934/1/012049 [CrossRef] [Google Scholar]
- T. A. Guzeva, G. V. Malysheva, Features of development of design-and-technological solutions during design of parts made of polymers and composites Russian metallurgy (Metally), 4, 34–41 (2022) doi: 10.31044/1684-2499-2022-0-4-35-41 [Google Scholar]
- Y. A. Kurganova, A. G. Kolmakov, I. Chen, S. V. Kurganov, Study of Mechanical Characteristics of Advanced Aluminum-Matrix Composites Reinforced with SiC and Al2O3 Inorganic Materials: Applied Research, 13, 157–160 (2022) doi 10.1134/S2075113322010245 [Google Scholar]
- L. Song, T. Gao, L. Tang, X. Du, J. Zhu, Y. Lin, G. Shi, H. Liu, G. Zhou, W. Zhang, An all-movable rudder designed by thermo-elastic topology optimization and manufactured by additive manufacturing Computers and structures, 243, 106405 (2021) doi:10.1016/j.compstruc.2020.106405 [Google Scholar]
- W. Soboyejo, L. Daniel, Bioinspired structures and design Cambridge: Cambridge University Press, 360 (2020) doi.org/10.1017/9781139058995 [Google Scholar]
- O. V. Mitrofanov, Load-bearing composite panels design based on post-buckling state: review and relevant objectives Natural and technical sciences, 11(162), 224-226 (2021) [Google Scholar]
- S. V. Kotomin, I. M. Obidin, E. A. Pavluchkova, Adhesive bond strength calculation of reinforcing fibers with polymers by the loop method Mechanics of Composite Materials, 58(1), 141-150 (2022) doi: 10.1007/s11029-022-10017-2 [Google Scholar]
- S. V. Reznik, A. S. Esetbatyrovich, Composite air vehicle tail fins thermal and stress– strain state modeling AIP Conf. Proc., 2318, 020012 (2021) doi: https://doi.org/10.1063/5.0036561 [Google Scholar]
- W. Zhao, R. K. Kapania, Bilevel programming weight minimization of composite flying-wing aircraft with curvilinear spars and ribs AIAA journal, 57(6), 2594-2608 (2019) doi: 10.2514/1.J057892 [Google Scholar]
- L. Miao, Y. C. Wang, R. Kavtaradze, S. Q. Liu, X. X. Sun, T. Zhang, Numerical investigation of heat transfer and flow resistance characteristics of interpenetrated flying-wing finned tubes International Journal of Heat and Mass Transfer, 191, 122866 (2022) doi 10.1016/j.ijheatmasstransfer.2022.122866 [Google Scholar]
- A. Dubois, C. Farhat, A. H. Abukhwejah, Parameterization framework for aeroelastic design optimization of bio–inspired wing structural layouts 57th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 2016-0485, 1-16 (2016) doi: 10.2514/6.2016–0485 [Google Scholar]
- A. A. Bolshikh, V. P. Eremin, Method of parametric optimization in the problems of passenger airliner design Engineering journal: science and innovation, 10(106), 1-14 (2020) doi: 10.18698/2308-6033-2020-10-2022 [Google Scholar]
- J. H. Zhu, W. H. Zhang, L. Xia, Topology optimization in aircraft and aerospace structures design Archives of computational methods in engineering, 23, 595-622 (2016) doi: 10.1007/s11831-015-9151-2 [Google Scholar]
- D. W. Martinez, M. Espino, J. R. Dizon, H. M. Cascolan, J. L. Crisostomo, A comprehensive review on the application of 3D printing in the aerospace industry Key engineering ma-terials, 913, 27-34 (2022) doi:10.4028/p-94a9zb [Google Scholar]
- S. A. Yurgenson, E. V. Lomakin, B. N. Fedulov, A. N. Fedorenko, Structural elements based on the metamaterials PNRPU Mechanics Bulletin, 4, 211–219 (2020) doi: 10.15593/perm.mech/2020.4.18 [CrossRef] [Google Scholar]
- B. K. Stanford, C. V. Jutte, Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailoring of aircraft wings Computers & structures, 183(15), 48–60 (2017) https://doi.org/10.1016/j.compstruc.2017.01.010 [Google Scholar]
- K. V. Mikhailovskiy, S. V. Baranovski, The methods of designing a poly-mer composite wing using parametrical modeling. Part III. Selection and justification of optimal schemes for reinforcing load bearing elements Proceedings of higher educational institutions. Machine building, 5, 75-84 (2018) doi: 10.18698/0536-1044-2018-5-75-84 [Google Scholar]
- K. Singh, W. Zhao, M. Jrad, R. K. Kapania, Hybrid optimization of curvilinearly stiffened shells using parallel processing Journal of aircraft, 56(3), 1068-1079 (2019) doi: 10.2514/1.C035069 [Google Scholar]
- S. V. Baranovski, K. V. Mikhailovskiy, Structurally optimized polymer composite wing design. Part 1. Curvilinear load-bearing elements TsAGI science journal, 51(2), 79-86 (2020) doi: 10.1615/TsAGISciJ.2020035007 [Google Scholar]
- S. De, M. Jrad, R. K. Kapania, Structural optimization of internal structure of aircraft wings with curvilinear spars and ribs Journal of aircraft, 56(2), 707-718 (2019) doi: 10.2514/1.C034818 [Google Scholar]
- R. Vescovini, V. Oliveri, D. Pizzi, L. Dozio, P. M. Weaver, A semi-analytical approach for the analysis of variable-stiffness panels with curvilinear stiffeners International journal of solids and structures, 188-189, 244-260 (2020) https://doi.org/10.1016/j.ijsolstr.2019.10.011 [Google Scholar]
- J. Hoffmann, S. Donoughe, K. Li, M. K. Salcedo, C. H. Rycroft, A simple developmental model recapitulates complex insect wing venation patterns Proceedings of the National Academy of Sciences, 115(40), 9905–9910 (2018) doi:10.1073/pnas.1721248115 [Google Scholar]
- M. K. Salcedo, J. Hoffmann, S. Donoughe, L. Mahadevan, Computational analysis of size, shape and structure of insect wings Biology open, 8(10), bio040774 (2019) doi:10.1242/bio.040774 [Google Scholar]
- B. Misof, S. Liu, K. Meusemann, R. S. Peters, et al., Phylogenomics resolves the timing and pattern of insect evolution Science, 346, 763-767 (2014) doi:10.1126/science.1257570 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.