Open Access
Issue
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
Article Number 02011
Number of page(s) 12
Section Agricultural Engineering and Mechanization
DOI https://doi.org/10.1051/e3sconf/202341302011
Published online 11 August 2023
  1. L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of nanometric iron (III) oxide: a review Chemistry of Materials, 23(14), 3255–3272 (2011) DOI:10.1021/cm200397g [Google Scholar]
  2. R. Zboril, M. Mashlan, D. Petridis, Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, mössbauer spectroscopy characterization, and applications Chemistry of Materials, 14(3), 969–982 (2002) DOI: 10.1021/cm0111074 [Google Scholar]
  3. A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, S.-I. Ohkoshi, Synthesis of an electromagnetic wave absorber for high-speed wireless communication Journal of the American Chemical Society, 131(3), 1170–1173 (2009) DOI: 10.1021/ja807943v [Google Scholar]
  4. A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro, S. Ohkoshi, Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation Nature Communications, 3, 1035, (2012) DOI: 10.1038/ncomms2038 [Google Scholar]
  5. D. Peeters, D. Barreca, G. Carraro, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors Journal of Physical Chemistry C, 118(22), 11813–11819 (2014), DOI: 10.1021/jp5032288 [Google Scholar]
  6. L. Kubickova, P. Brazda, M. Veverka, O. Kaman, V. Herynek, M. Vosmanska, P. Dvorak, K. Bernasek, J. Kohout, Nanomagnets for ultra-high field MRI: magnetic properties and transverse relaxivity of silica-coated ε-Fe2O3 Journal of Magnetism and Magnetic Materials, 480(15), 154–163 (2019) DOI: 10.1016/j.jmmm.2019.02.067 [Google Scholar]
  7. J. G. Li, G. Fornasieri, A. Bleuzen, M. Gich, M. Imperor-Clerc, ε-Fe2O3 nanocrystals inside mesoporous silicas with tailored morphologies of rod, Platelet and Donut Chemistry of nanomaterials for energy, biology and more, 4(11), 1168–1176 (2018) DOI: 10.1002/cnma.201800266 [Google Scholar]
  8. A. Tanskanen, M. Karppinen, Tailoringof optoelectronic properties ofε-Fe2O3 thin films through insertion of organic interlayers Physica status solidi (RRL), 12(12), 1800390 (2018) DOI: 10.1002/pssr.201800390 [Google Scholar]
  9. K. Kralovec, R. Havelek, D. Koutova, P. Veverka, L. Kubickova, P. Brazda, J. Kohout, V. Herynek, M. Vosmanska, O. Kaman, Magnetic nanoparticles of Ga-substituted ε-Fe2O3 for biomedical applications: magnetic properties, transverse relaxivity, and effects of silica-coated particles on cytoskeletal networks Journal of Biomedical Materials Research Part A, 108(7), 1563–1578 (2020) DOI: 10.1002/jbm.a.36926 [Google Scholar]
  10. M. Gich, C. Frontera, A. Roig, J. Fontcuberta, E. Molins, N. Bellido, C. Simon, C. Fleta, Magnetoelectric couplingin ε-Fe2O3 nanoparticles Nanotechnology, 17(3), 687–691 (2006) DOI: 10.1088/0957-4484/17/3/012 [Google Scholar]
  11. J. Tucek, R. Zboril, A. Namai, S. Ohkoshi, ε-Fe2O3: an advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling Chemistry of Materials, 22(24), 6483–6505 (2010) DOI: 10.1021/cm101967h [Google Scholar]
  12. H. Tokoro, A. Namai, S. Ohkoshi, Advances in magnetic films of epsilon-iron oxide toward next-generation high-density recording media Dalton Transactions, 50(2), 452–459 (2021) DOI: 10.1039/D0DT03460F [Google Scholar]
  13. S. Sakurai, J. Jin, K. Hashimoto, S. Ohkoshi, Reorientation phenomenon in a magnetic phase of ε-Fe2O3 nanocrystal Journal of the Physical Society of Japan, 74(7), 1946–1949 (2005) DOI: 10.1143/JPSJ.74.1946 [Google Scholar]
  14. S. Sakurai, S. Kuroki, H. Tokoro, K. Hashimoto, S. Ohkoshi, Synthesis, crystal structure, and magnetic properties of ε-InxFe2-xO3 nanorod-shaped magnets Advanced Functional Materials, 17(14), 2278–2282 (2007) DOI: 10.1002/adfm.200600581 [Google Scholar]
  15. K. Yamada, H. Tokoro, M. Yoshikiyo, T. Yorinaga, A. Namai, S. Ohkoshi, The phase transition of ε-InxFe2-xO3 nanomagnets with a large thermal hysteresis loop Journal of Applied Physics, 111(7), 07B506 (2012) DOI: 10.1063/1.3672075 [Google Scholar]
  16. A. I. Dmitriev, H. Tokoro, S. Ohkoshi, R. B. Morgunov, Anomalous magnetization dynamics near the spin-reorientation transition temperature in ε-In0.24Fe1.76O3 nanowires Low Temperature Physics, 41(20), 20–24 (2015) DOI: 10.1063/1.4906312 [Google Scholar]
  17. M. Gich, A. Roig, C. Frontera. E. Molins, J. Sort, M. Popovici, G. Chouteau, D. Martin y Marero, J. Nogues, Large coercivity and low-temperature magnetic reorientation in ε‐Fe2O3 nanoparticles Journal ofApplied Physics, 98(4), 044307 (2005) DOI: 10.1063/1.1997297 [Google Scholar]
  18. A. I. Dmitriev, O. V. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, R. Morgunov, Magnetic Phase Transition in ε-InxFe2–xO3 Nanowires Physics of the Solid State, 55(11), 2252–2259 (2013) DOI: 10.1134/S1063783413110073 [Google Scholar]
  19. A. I. Dmitriev, O. V. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, R. B. Morgunov, Spin-reorientation transition in ɛ-In0.24Fe1.76O3 nanowires Physics of the Solid State, 56(9), 1795–1798 (2014) DOI: 10.1134/S1063783414090091 [Google Scholar]
  20. M. Sperl, A. Singh, U. Wurstbauer, S. Kumar Das, A. Sharma, M. Hirmer, W. Nolting, C. H. Back, W. Wegscheider, G. Bayreuther, Spin-wave excitations and low-temperature magnetization in the dilute magnetic semiconductor (Ga,Mn)As Physical Review B, 77(12), 125212 (2008) DOI: 10.1103/PhysRevB.77.125212 [Google Scholar]
  21. B. Martinez, A. Roig, X. Obradors, E. Molins, Magnetic properties ofγ‐Fe2O3 nanoparticles obtained by vaporization condensation in a solar furnace Journal of Applied Physics, 79(5), 2580–2586 (1996) DOI: 10.1063/1.361125 [Google Scholar]
  22. G. Xiao, C. L. Chien, Temperature dependence of spontaneous magnetization of ultrafine Feparticles in Fe‐SiO2 granular solids Journal of Applied Physics, 61(8), 3308–3310 (1987) DOI: 10.1063/1.338891 [Google Scholar]
  23. V. B. Barbeta, R. F. Jardim, P. K. Kiyohara, F. B. Effenberger, L. M. Rossi, Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids Journal of Applied Physics, 107(7), 073913 (2010) DOI: 10.1063/1.3311611 [Google Scholar]
  24. S. T. B. Goennenwein, T. Graf, T. Wassner, M. S. Brandt, M. Stutzmann, J. B. Philipp, R. Gross, M. Krieger, K. Zürn, P. Ziemann, A. Koeder, S. Frank, W. Schoch, A. Waag, Spin wave resonance in Ga1-xMnxAs Applied Physics Letters, 82(5), 730–732 (2003) DOI: 10.1063/1.1539550 [CrossRef] [Google Scholar]
  25. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, R. Z. Levitin, Spin-reorientation transitions in rare-earth magnets Soviet Physics Uspekhi, 19(7), 574–596 (1976) DOI: 10.1070/PU1976v019n07ABEH005274 [Google Scholar]
  26. C. P. Slichter, H. G. Drickamer, Pressure‐induced electronicchanges in compounds of iron, Journal of Chemical Physics, 56(5), 2142–2160 (1972) DOI: 10.1063/1.1677511 [CrossRef] [Google Scholar]
  27. F. A. Fedulov, D. V. Saveliev, D. V. Chashin, S. B. Odinokov, A. S. Kuznetsov, Y. K. Fetisov, Anisotropy of magnetoelectric effects in a planar heterostructure comprising a piezoelectric substrate and a ferromagnetic grating, Journal of Magnetism and Magnetic Materials, 547, 168943 (2022) https://doi.org/10.1016/j.jmmm.2021.168943 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.