Open Access
Issue
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
Article Number 02013
Number of page(s) 10
Section Agricultural Engineering and Mechanization
DOI https://doi.org/10.1051/e3sconf/202341302013
Published online 11 August 2023
  1. S. Manladan, F. Yusof, S. Ramesh, M. Fadzil, A review on resistance spot welding of magnesium alloys. Int J Adv Manuf Technol, 86(5),1805–1825 (2016) doi.org/10.1007/s00170-015-8258-9. [CrossRef] [Google Scholar]
  2. Yu. P. Trykov, L. M. Gurevich, V. G. Smorgun, Layered composites based on aluminum and its alloys, Metallurgizdat, 230 (2004) [Google Scholar]
  3. L. Liu, Introduction to the welding and joining of magnesium. -In: Liu L (ed) Welding and joining of magnesium alloys. Woodhead Publishing, Cambridge (2010) doi.org/10.1533/9780857090423.1.3/ [CrossRef] [Google Scholar]
  4. L. Liu, D. Ren, F. Liu, A review of dissimilar welding techniques for magnesium alloys to aluminum alloys, Materials, 7(5), 3735-3757 (2014) doi.org/10.3390/ma7053735. [CrossRef] [PubMed] [Google Scholar]
  5. H. T. Zhang, J. Q. Song, Microstructural evolution of aluminum/magnesium lap joints welded using MIG process with zinc foil as an interlayer, Materials Letters, 65(21-22), 3292-3294 (2011) doi.org/10.1016/j.matlet.2011.05.080. [CrossRef] [Google Scholar]
  6. Y. M. Baqer, et al., Challenges and advances in laser welding of dissimilar light alloys: Al/Mg, Al/Ti, and Mg/Ti alloys, The International Journal of Advanced Manufacturing Technology, 95(9), 4353-4369 (2018) doi.org/10.1007/s00170-017-1565-6. [CrossRef] [Google Scholar]
  7. X. J. Cao, M. Jahazi, J. P. Immarigeon, W. Wallace, A review of laser welding techniques for magnesium alloys, Journal of Materials Processing Technology, 171(2), 188-204 (2006) doi.org/10.1016/j.jmatprotec.2005.06.068. [CrossRef] [Google Scholar]
  8. S. B. Halim, et al., Numerical analysis of intermetallic compounds formed during laser welding of Aluminum-Magnesium dissimilar couple //Thermal Science and Engineering Progress. 22, 100838 (2021) doi.org/10.1016/j.tsep.2020.100838. [CrossRef] [Google Scholar]
  9. L. M. Gurevich, V. N. Arisova, Y. P. Trykov, I. A. Ponomareva, A. F. Trudov, Special Features of Structure Formation in an Explosion-Welded Magnesium-Aluminum Composite Under Deformation and Subsequent Heat Treatment, Metal Science and Heat Treatment, 58(3), 214-218 (2016) doi.org/10.1007/s11041-016-9991-x. [CrossRef] [Google Scholar]
  10. A. Rouzbeh, M. Sedighi, R. Hashemi, Comparison between explosive welding and roll-bonding processes of AA1050/Mg AZ31B bilayer composite sheets considering microstructure and mechanical properties, Journal of Materials Engineering and Performance, 29(10), 6322-6332 (2020) doi.org/10.1007/s11665-020-05126-9 [CrossRef] [Google Scholar]
  11. Yu. P. Trykov, V. G. Shmorgun, V. D. Rogozin, Y. G. Dolgii, Technology of explosive welding magnesium–aluminium composite joints, Welding international, 17(8), 661-664 (2003) doi.org/10.1533/wint.2003.3186. [CrossRef] [Google Scholar]
  12. V. N. Arisova, Yu. P. Trykov, V. G. Shmorgun, A. F. Trudov, D. S. Samarskii, Regularities in the formation of diffusion layers in magnesium-aluminum composite, Russian Journal of Non-Ferrous Metals, 48(4), 280-285 (2007) Doi: 10.3103/S1067821207040074. [CrossRef] [Google Scholar]
  13. P. Manikandan, J. N. Lee, K. Mizumachi, S. H. Ghaderi, A. Mori, K. Hokamoto, Transition joints of aluminum and magnesium alloy made by underwater explosive welding technique, Materials Science Forum, Trans Tech Publications Ltd, 706, 757-762 (2012) [CrossRef] [Google Scholar]
  14. L. Gurevich, Yu. Trykov, D. Pronichev, M. Trunov, Investigation, on the contact hardening of Al/Steel laminated composites with soft interlayers, WSEAS Transactions on Applied and Theoretical Mechanics, 9(1), 275-281 (2014) [Google Scholar]
  15. L. Gurevich, D. Pronichev, M. Trunov, Contact hardening of Al interlayer in laminated Mg/Al composites during compressive and tensile loading, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 116(1), 012012 (2016) doi:10.1088/1757-899X/116/1/012012 [CrossRef] [Google Scholar]
  16. G. R. Johnson, W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proc. of 7th Symposium on Ballistics, Hague, Netherlands, 541–547 (1983) [Google Scholar]
  17. G. R. Johnson, W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures, Engineering Fracture Mechanics, 21, 31–48 (1985) [CrossRef] [Google Scholar]
  18. V. A. Kuzkin, D. S. Mikhaluk, Application of Numerical Simulation to Identify the Parameters of the Johnson-Cook Model for High-Speed Deformation of Aluminum, Vychislitrlnaya mekhanika sploshnyh sred, 3(1), 32–43 (2010) doi.org/10.7242/1999-6691/2010.3.1.4 [Google Scholar]
  19. E. Giraud, F. Rossi, G. Germain, J. C. Outeiro, Constitutive Modelling of AZ31B-O Magnesium Alloy for Cryogenic Machining, 14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO), (CIRP CMMO), Italy (2013). doi : 10.1016/j.procir.2013.06.144. [Google Scholar]
  20. V. K. R. Sirigiri, V. Y. Gudiga, U. S. Gattu, G. Suneesh, K. M. Buddaraju, A review on Johnson Cook material model, Materials Today: Proceedings (2022) doi.org/10.1016/j.matpr.2022.04.279 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.