Open Access
Issue
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
Article Number 02041
Number of page(s) 7
Section Agricultural Engineering and Mechanization
DOI https://doi.org/10.1051/e3sconf/202341302041
Published online 11 August 2023
  1. M. Y. Zemenkova, E. L. Chizhevskaya, Y. D. Zemenkov, Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies. Journal of Mining Institute, 258, 933-944 (2022) https://doi.org/10.31897/PMI.2022.105 [CrossRef] [Google Scholar]
  2. A.V. Shulenina, Application of neural networks for classification of network traffic, Young scientist, 49(287), 26-28 (2019) [Google Scholar]
  3. V. V. Belousov, O. V. Druzhinina, E. R. Korepanov, I. V. Makarenkova, V. V. Maksimova, Application of neural networks for solving classification problems in detecting transport system malfunctions, Neurocomputers: development, application, 24(4), 18-27 (2022) DOI: https://doi.org/10.18127/j19998554 [Google Scholar]
  4. A. Kumar, T. Singh, D. K. Vishwakarma, Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time. Advances in Manufacturing and Industrial Engineering. ICAPIE 2019. Lecture Notes in Mechanical Engineering. Springer, Singapore (2021) https://doi.org/10.1007/978-981-15-8542-5_18 [Google Scholar]
  5. I. Rojek, Technological process planning by the use of neural networks. AI EDAM, 31(1), 1-15 (2017) doi:10.1017/S0890060416000147 [Google Scholar]
  6. L. A. Leonidas, Y. Jie, Ship Classification Based on Improved Convolutional Neural Network Architecture for Intelligent Transport Systems. Information, 12, 302 (2021) https://doi.org/10.3390/info12080302 [CrossRef] [Google Scholar]
  7. A. Muhammad, M. K. Asad, S. Sarmad, H. Bashir, and etc, "Convolutional Neural Network Based Vehicle Classification in Adverse Illuminous Conditions for Intelligent Transportation Systems", Complexity, 6644861, 11 (2021) https://doi.org/10.1155/2021/6644861 [Google Scholar]
  8. L. Tianzeng, Z. Guangping, Evaluation of mechanical properties of materials based on a genetic algorithm optimizing the BP neural network, Computational Intelligence and Neuroscience, 2115653, 12 (2021) https://doi.org/10.1155/2021/2115653. [Google Scholar]
  9. Y. San, L. Bo, L. Cunyan, Deep neural network method for predicting mechanical properties of composites. the application is physical. lat. October 14, 115(16), 161901 (2019) https://doi.org/10.1063/1.5124529 [Google Scholar]
  10. Z. Zhu, Y. Liang, J. Zou, Modeling and design of the composition of mechanical properties of low-alloy steel based on neural networks and genetic algorithms. Materials, 13(23), 5316 (2020)https://doi.org/10.3390/ma13235316 [CrossRef] [PubMed] [Google Scholar]
  11. N. E. Babushkina, A. A. Lyapin, Reshenie zadachi opredeleniia mekhanicheskikh svoistv materialov dorozhnykh konstruktsii s ispol'zovaniem neirosetevykh tekhnologii, Advanced Engineering Research, 22(3), 285-292 (2022) doi:10.23947/2687-1653-2022-22-3-285-292 [CrossRef] [Google Scholar]
  12. N. E. Babushkina, Sravnitel'nyi analiz ispol'zovaniia neironnoi seti v zadache identifikatsionnykh svoistv materialov, Inzhenernyi vestnik Dona, 11(83), 325-334 (2021) [Google Scholar]
  13. R. Abd, M. Intan, M. Intan, and etc., “Classifying Material Type and Mechanical Properties Using Artificial Neural Network." 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications (2011) doi:10.1109/CSPA.2011.5759874. [Google Scholar]
  14. A. F. Galimianov, Primenenie proizvodnykh i integralov proizvol'nogo poriadka dlia modelirovaniia neironnoi seti s priamoi sviaz'iu i approksimatsii funktsii s ispol'zovaniem neironnoi seti s priamoi sviaz'iu, Nauchno-tekhnicheskii vestnik Povolzh'ia, 5, 36-38 (2022) [Google Scholar]
  15. A. Zakharov, R. Shenkman, I. Ofrikhter, A. Ponomaryov, Estimation of soil properties by an artificial neural network, Magazine of Civil Engineering, 110(2), 11011 (2022) doi:10.34910/MCE.110.11 [Google Scholar]
  16. A. N. Beskopyl'nyi, A. A. Veremeenko, F. S. Kopylov, V. S. Krymskii, Zadacha o staticheskom vnedrenii konicheskogo indentora v oblast' s poverkhnostnym uprochneniem, Inzhenernyi vestnik Dona, 4 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.