Open Access
Issue |
E3S Web Conf.
Volume 418, 2023
African Cities Conference (ACC 2023): A part of African Cities Lab 2023 Summit
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 12 | |
Section | Emerging Technologies and Applications to African Cities Issues | |
DOI | https://doi.org/10.1051/e3sconf/202341803002 | |
Published online | 18 August 2023 |
- Ait-Ali, A., & Eliasson, J. (2022). The value of additional data for public transport origin– destination matrix estimation. Public Transport, 14(2), 419–439. https://doi.org/10.1007/S12469021-00282-0 [CrossRef] [Google Scholar]
- Aurélien Géron. (2019). Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 851. https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ [Google Scholar]
- Bai, L., Yao, L., Kanhere, S. S., Yang, Z., Chu, J., & Wang, X. (2019). Passenger demand forecasting with multi-task convolutional recurrent neural networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11440 LNAI, 29–42. https://doi.org/10.1007/9783-030-16145-3_3/COVER [Google Scholar]
- Becker, K., Terekhov, I., Niklaß, M., & Gollnick, V. (2018). A global gravity model for air passenger demand between city pairs and future interurban air mobility markets identification. 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-2885 [Google Scholar]
- Booth Andrew, Sutton Anthea, & Papaioannou Diana. (2016). Systematic Approaches to a Successful Literature Review. Systematic Approaches to a Successful Literature Review, 1–336. https://www.google.co.uk/books/edition/Systematic_Approaches_to_a_Successful_Li/JD1DCgAAQBAJ?hl=en&gbpv=0&kptab=overview [Google Scholar]
- Duan, Z., Zhang, K., Chen, Z., Liu, Z., Tang, L., Yang, Y., & Ni, Y. (2019). Prediction of city-scale dynamic taxi origin-destination flows using a hybrid deep neural network combined with travel time. IEEE Access, 7, 127816–127832. https://doi.org/10.1109/ACCESS.2019.2939902 [CrossRef] [Google Scholar]
- Giraldo-Forero, A. F., Garcia-Lopez, S., Rodriguez-Marin, P. A., Martinez, J., CéspedesVillar, Y. R., Cardona, O., Acosta, J. C., & Trujillo, L. C. (2019). A Spatiotemporal Analysis of Taxis Demand: A Case Study in the Manizales City. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11896 LNCS, 514–524. https://doi.org/10.1007/978-3-030-339043_48/COVER [Google Scholar]
- Han, L., Ma, X., Sun, L., Du, B., Fu, Y., Lv, W., & Xiong, H. (2022a). Continuous-Time and MultiLevel Graph Representation Learning for OriginDestination Demand Prediction. Dl.Acm.Org, 22, 516–524. https://doi.org/10.1145/3534678.3539273 [Google Scholar]
- Han, L., Ma, X., Sun, L., Du, B., Fu, Y., Lv, W., & Xiong, H. (2022b). Continuous-Time and MultiLevel Graph Representation Learning for OriginDestination Demand Prediction. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 516–524. https://doi.org/10.1145/3534678.3539273 [Google Scholar]
- Hillel, T., Bierlaire, M., Elshafie, M. Z. E. B., & Jin, Y. (2021). A systematic review of machine learning classification methodologies for modelling passenger mode choice. Journal of Choice Modelling, 38, 100221. https://doi.org/10.1016/J.JOCM.2020.100221 [CrossRef] [Google Scholar]
- Huang, Z., Zhang, W., Wang, D., & Yin, Y. (2022). A GAN framework-based dynamic multigraph convolutional network for origin– destination-based ride-hailing demand prediction. Information Sciences, 601, 129–146. https://doi.org/10.1016/J.INS.2022.04.024 [CrossRef] [Google Scholar]
- Kumar, A., & Barrett, F. (2008). Stuck in Traffic: Urban Transport in Africa Africa Infrastructure Country Diagnostic. [Google Scholar]
- Li, W., Guan, H., Han, Y., Zhu, H., & Wang, A. (2022). Short-Term Holiday Travel Demand Prediction for Urban Tour Transportation: A Combined Model Based on STC-LSTM Deep Learning Approach. KSCE Journal of Civil Engineering, 26(9), 4086–4102. https://doi.org/10.1007/S12205-022-20518/METRICS [CrossRef] [Google Scholar]
- Liang, X., Wang, G., Renqiang Min, M., Qi, Y., & Han, Z. (2019). A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction. Proceedings of the 2019 SIAM International Conference on Data Mining. https://epubs.siam.org/terms-privacy [Google Scholar]
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical Research Ed.), 339. https://doi.org/10.1136/bmj.b2700 [CrossRef] [PubMed] [Google Scholar]
- Litman, T. A., & Litman, T. (2022). www.vtpi.org Info@vtpi.org 250-508-5150. www.vtpi.org [Google Scholar]
- Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., & Lin, L. (2019). Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3875–3887. https://doi.org/10.1109/TITS.2019.2915525 [CrossRef] [Google Scholar]
- Liyanage, S., Abduljabbar, R., Dia, H., & Tsai, P. W. (2022). AI-based neural network models for bus passenger demand forecasting using smart card data. Journal of Urban Management, 11(3), 365–380. https://doi.org/10.1016/J.JUM.2022.05.002 [CrossRef] [Google Scholar]
- Meinardi, S., Nissenson, P., Barletta, B., Dabdub, D., Sherwood Rowland, F., & Blake, D. R. (2008). Influence of the public transportation system on the air quality of a major urban center. A case study: Milan, Italy. Atmospheric Environment, 42(34), 7915–7923. https://doi.org/10.1016/J.ATMOSENV.2008.07.046 [Google Scholar]
- Miao, H., Fei, Y., Wang, S., Wang, F., & Wen, D. (2022). Deep learning based origin-destination prediction via contextual information fusion. Multimedia Tools and Applications, 81(9), 12029–12045. https://doi.org/10.1007/S11042-02010492-6/METRICS [CrossRef] [Google Scholar]
- Munn, Z., Stern, C., Aromataris, E., Lockwood, C., & Jordan, Z. (2018). What kind of systematic review should i conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Medical Research Methodology, 18(1), 1–9. https://doi.org/10.1186/S12874-017-04684/TABLES/1 [CrossRef] [PubMed] [Google Scholar]
- Raschka, S., & Mirjalili, V. (2019). Python machine learning : machine learning and deep learning with python, scikit-learn, and tensorflow 2. 741. [Google Scholar]
- Román, C., Espino, R., & Carlos Martín, J. (2010). Analyzing Competition between the High Speed Train and Alternative Modes. The Case of the Madrid-Zaragoza-Barcelona Corridor. Journal of Choice Modelling, 3(1), 84–108. www.jocm.org.uk [Google Scholar]
- Street, M., Rachman, H. O., Ridwan, K., Li, X., Li, C., & Yu, H. (2021). Taxi Hotspots Identification through Origin and Destination Analysis of Taxi Trips using K-means Clustering and H-indexing. Journal of Physics: Conference Series, 1997(1), 012006. https://doi.org/10.1088/1742-6596/1997/1/012006 [CrossRef] [Google Scholar]
- Sun, F., Wang, X. L., Zhang, Y., Liu, W. X., & Zhang, R. J. (2020). Analysis of bus trip characteristic analysis and demand forecasting based on GA-NARX neural network model. IEEE Access, 8, 8812–8820. https://doi.org/10.1109/ACCESS.2020.2964689 [CrossRef] [Google Scholar]
- Wang, Y., Wo, T., Yin, H., Xu, J., Chen, H., & Zheng, K. (2019). Origin-destination matrix prediction via graph convolution: A new perspective of passenger demand modeling. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1227–1235. https://doi.org/10.1145/3292500.3330877 [Google Scholar]
- Wei, W., & Yan, X. (2019). A novel deep recurrent neural network for Short-term travel demand forecasting under on-demand ride services. IOP Conference Series: Materials Science and Engineering, 688(3), 033022. https://doi.org/10.1088/1757-899X/688/3/033022 [CrossRef] [Google Scholar]
- Yang, F., Shuai, C., Qian, Q., Wang, W., He, M., He, M., & Lee, J. (2022). Predictability of shortterm passengers’ origin and destination demands in urban rail transit. Transportation, 1–27. https://doi.org/10.1007/S11116-022-103139/METRICS [Google Scholar]
- Ye, P., & Ma, Y. (2022). Clustering-Based Travel Pattern for Individual Travel Prediction of Frequent Passengers by Using Transit Smart Card. https://Doi.Org/10.1177/03611981221111355, 036119812211113. https://doi.org/10.1177/03611981221111355 [Google Scholar]
- Yeon, K., Min, K., Shin, J., Sunwoo, M., & Han, M. (2019). Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network. International Journal of Automotive Technology, 20(4), 713–722. https://doi.org/10.1007/S12239-019-0067Y/METRICS [CrossRef] [Google Scholar]
- Zhang, K., Liu, Z., & Zheng, L. (2020). ShortTerm Prediction of Passenger Demand in MultiZone Level: Temporal Convolutional Neural Network with Multi-Task Learning. IEEE Transactions on Intelligent Transportation Systems, 21(4), 1480–1490. https://doi.org/10.1109/TITS.2019.2909571 [CrossRef] [Google Scholar]
- Zhao, J., Kong, W., Zhou, M., Zhou, T., Xu, Y., & Li, M. (2022). Prediction of Urban Taxi Travel Demand by Using Hybrid Dynamic Graph Convolutional Network Model. Sensors 2022, Vol. 22, Page 5982, 22(16), 5982. https://doi.org/10.3390/S22165982 [Google Scholar]
- Zhao, Q., Zhu, J., Zhu, J., -, al, Qu, H., Sako, M., Gödel, M., Lehmberg, D., Brydon, R., Bosina, E., & Köster, G. (2022). Toward learning dynamic origin-destination matrices from crowd density heatmaps. Iopscience.Iop.Org, 53401. https://doi.org/10.1088/1742-5468/ac6255 [Google Scholar]
- Zhao, X., Cui, M., & Levinson, D. (2022). Exploring temporal variability in travel patterns on public transit using big smart card data. https://Doi.Org/10.1177/23998083221089662, 50(1), 198–217. https://doi.org/10.1177/23998083221089662 [Google Scholar]
- Zhao, Z., Koutsopoulos, H. N., & Zhao, J. (2018). Individual mobility prediction using transit smart card data. Transportation Research Part C: Emerging Technologies, 89, 19–34. https://doi.org/10.1016/J.TRC.2018.01.022 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.