Open Access
Issue
E3S Web Conf.
Volume 426, 2023
The 5th International Conference of Biospheric Harmony Advanced Research (ICOBAR 2023)
Article Number 01063
Number of page(s) 9
Section Integrated Sustainable Science and Technology Innovation
DOI https://doi.org/10.1051/e3sconf/202342601063
Published online 15 September 2023
  1. D. H. Kuan, C. C. Wu, W. Y. Su, and N. T. Huang, “A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On-Chip White Blood Cell Trapping,” Sci. Reports 2018 81, vol. 8, no. 1, pp. 1–9, Oct. 2018, doi: 10.1038/s41598-018- 33738-8. [Google Scholar]
  2. S. O. Catarino, R. O. Rodrigues, D. Pinho, J. M. Miranda, G. Minas, and R. Lima, “Blood cells separation and sorting techniques of passive microfluidic devices: From fabrication to applications,” Micromachines, vol. 10, no. 9, 2019, doi: 10.3390/mi10090593. [Google Scholar]
  3. C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y. J. Yoon, “3D printed microfluidics for biological applications,” Lab Chip, vol. 15, no. 18, pp. 3627–3637, Jul. 2015, doi: 10.1039/C5LC00685F. [CrossRef] [PubMed] [Google Scholar]
  4. W. Liang et al., “Microfluidic-based cancer cell separation using active and passive mechanisms,” Microfluid. Nanofluidics 2020 244, vol. 24, no. 4, pp. 1–19, Mar. 2020, doi: 10.1007/S10404-020-2331-X. [Google Scholar]
  5. S. Yan, J. Zhang, D. Yuan, and W. Li, “Hybrid microfluidics combined with active and passive approaches for continuous cell separation,” Electrophoresis, vol. 38, no. 2, pp. 238–249, Jan. 2017, doi: 10.1002/ELPS.201600386. [CrossRef] [PubMed] [Google Scholar]
  6. P. Ohlsson, K. Petersson, P. Augustsson, and T. Laurell, “Acoustic impedance matched buffers enable separation of bacteria from blood cells at high cell concentrations,” Sci. Reports 2018 81, vol. 8, no. 1, pp. 1–11, Jun. 2018, doi: 10.1038/s41598-018-25551-0. [Google Scholar]
  7. Y. Wang, B. B. Nunna, N. Talukder, E. E. Etienne, and E. S. Lee, “Blood Plasma Self- Separation Technologies during the Self-Driven Flow in Microfluidic Platforms,” Bioeng. 2021, Vol. 8, Page 94, vol. 8, no. 7, p. 94, Jul. 2021, doi: 10.3390/BIOENGINEERING8070094. [Google Scholar]
  8. S. Yan, J. Zhang, G. Alici, H. Du, Y. Zhu, and W. Li, “Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device,” Lab Chip, vol. 14, no. 16, pp. 2993–3003, Jul. 2014, doi: 10.1039/C4LC00343H. [CrossRef] [PubMed] [Google Scholar]
  9. F. Burgos-Flórez, A. Rodríguez, E. Cervera, M. De Ávila, M. Sanjuán, and P. J. Villalba, “Microfluidic Paper-Based Blood Plasma Separation Device as a Potential Tool for Timely Detection of Protein Biomarkers,” Micromachines, vol. 13, no. 5, May 2022, doi: 10.3390/MI13050706/S1. [Google Scholar]
  10. S. Ribeiro-Samy et al., “Fast and efficient microfluidic cell filter for isolation of circulating tumor cells from unprocessed whole blood of colorectal cancer patients,” Sci. Reports 2019 91, vol. 9, no. 1, pp. 1–12, May 2019, doi: 10.1038/s41598-019-44401-1. [Google Scholar]
  11. B. B. Nunna et al., “Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor,” Nano Converg., vol. 6, no. 1, pp. 1– 12, Dec. 2019, doi: 10.1186/S40580-019-0173- 6/FIGURES/14. [CrossRef] [Google Scholar]
  12. H. Liao, M. Tang, L. Luo, C. Li, F. Chiclana, and X. J. Zeng, “A bibliometric analysis and visualization of medical big data research,” Sustain., vol. 10, no. 1, Jan. 2018, doi: 10.3390/SU10010166. [Google Scholar]
  13. N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” J. Bus. Res., vol. 133, pp. 285–296, Sep. 2021, doi: 10.1016/J.JBUSRES.2021.04.070. [CrossRef] [Google Scholar]
  14. B. X. Tran et al., “Global evolution of research in artificial intelligence in health and medicine: A bibliometric study,” J. Clin. Med., vol. 8, no. 3, Mar. 2019, doi: 10.3390/JCM8030360. [Google Scholar]
  15. M. Haghani, M. C. J. Bliemer, F. Goerlandt, and J. Li, “The scientific literature on Coronaviruses, COVID-19 and its associated safety-related research dimensions: A scientometric analysis and scoping review,” Saf. Sci., vol. 129, Sep. 2020, doi: 10.1016/J.SSCI.2020.104806. [Google Scholar]
  16. Y. Gao, M. Wu, Y. Lin, and J. Xu, “Acoustic Microfluidic Separation Techniques and Bioapplications: A Review,” Micromachines, vol. 11, no. 10, Oct. 2020, doi: 10.3390/MI11100921. [Google Scholar]
  17. S. O. Catarino, R. O. Rodrigues, D. Pinho, J. M. Miranda, G. Minas, and R. Lima, “Blood Cells Separation and Sorting Techniques of Passive Microfluidic Devices: From Fabrication to Applications,” Micromachines, vol. 10, no. 9, Sep. 2019, doi: 10.3390/MI10090593. [Google Scholar]
  18. I. Drijer and K. Schroën, “Modelling Shear Induced Diffusion Based Particle Segregation: A Basis for Novel Separation Technology,” Appl. Sci. 2018, Vol. 8, Page 1008, vol. 8, no. 6, p. 1008, Jun. 2018, doi: 10.3390/APP8061008. [Google Scholar]
  19. M. Sesen and G. Whyte, “Image-Based Single Cell Sorting Automation in Droplet Microfluidics,” Sci. Reports 2020 101, vol. 10, no. 1, pp. 1–14, May 2020, doi: 10.1038/s41598-020-65483-2. [Google Scholar]
  20. M. Sancho-Albero et al., “Isolation of exosomes from whole blood by a new microfluidic device: proof of concept application in the diagnosis and monitoring of pancreatic cancer,” J. Nanobiotechnology, vol. 18, no. 1, Dec. 2020, doi: 10.1186/S12951-020-00701-7. [CrossRef] [Google Scholar]
  21. A. S. Rzhevskiy et al., “Rapid and Label-Free Isolation of Tumour Cells from the Urine of Patients with Localised Prostate Cancer Using Inertial Microfluidics,” Cancers (Basel)., vol. 12, no. 1, Jan. 2019, doi: 10.3390/CANCERS12010081. [CrossRef] [Google Scholar]
  22. A. Kulasinghe, H. Wu, C. Punyadeera, and M. E. Warkiani, “The Use of Microfluidic Technology for Cancer Applications and Liquid Biopsy,” Micromachines, vol. 9, no. 8, Aug. 2018, doi: 10.3390/MI9080397. [CrossRef] [PubMed] [Google Scholar]
  23. N. O. Eltai et al., “Urine Tests for Diagnosis of Infectious Diseases and Antibiotic-Resistant Pathogens,” Pathog. Bact., Oct. 2019, doi: 10.5772/INTECHOPEN.89231. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.