Open Access
Issue |
E3S Web Conf.
Volume 426, 2023
The 5th International Conference of Biospheric Harmony Advanced Research (ICOBAR 2023)
|
|
---|---|---|
Article Number | 01076 | |
Number of page(s) | 9 | |
Section | Integrated Sustainable Science and Technology Innovation | |
DOI | https://doi.org/10.1051/e3sconf/202342601076 | |
Published online | 15 September 2023 |
- WHO, “Burns,” Mar. 06, 2018. https://www.who.int/news-room/fact-sheets/detail/burns#:~:text=An%20estimated%20180%20000%20deaths,Burns%20are%20preventable (accessed May 10, 2023). [Google Scholar]
- H. Shin et al., “Sample-Efficient Deep Learning Techniques for Burn Severity Assessment with Limited Data Conditions,” Applied Sciences (Switzerland), vol. 12, no. 14, Jul. 2022, doi: 10.3390/app12147317. [Google Scholar]
- U. Şevik, E. Karakulluki;u, T. Berber, Y. Akbaş, and S. Türkyilmaz, “Automatic classification of skin burn colour images using texture-based feature extraction,” IET Image Process, vol. 13, no. 11, pp. 2018–2028, Sep. 2019, doi: 10.1049/iet-ipr.2018.5899. [CrossRef] [Google Scholar]
- D. P. Yadav, A. Sharma, M. Singh, and A. Goyal, “Feature extraction based machine learning for human burn diagnosis from burn images,” IEEE J Transl Eng Health Med, vol. 7, 2019, doi: 10.1109/JTEHM.2019.2923628. [CrossRef] [Google Scholar]
- S. A. Suha and T. F. Sanam, “A deep convolutional neural network-based approach for detecting burn severity from skin burn images,” Machine Learning with Applications, vol. 9, p. 100371, Sep. 2022, doi: 10.1016/j.mlwa.2022.100371. [CrossRef] [Google Scholar]
- M. D. Cirillo, R. Mirdell, F. Sjöberg, and T. D. Pham, “Improving burn depth assessment for pediatric scalds by AI based on semantic segmentation of polarized light photography images,” Burns, vol. 47, no. 7, pp. 1586–1593, Nov. 2021, doi: 10.1016/j.burns.2021.01.011. [CrossRef] [PubMed] [Google Scholar]
- D. P. Yadav, “A Method for Human Burn Diagnosis Using Machine Learning and SLIC Superpixels Based Segmentation,” IOP Conf Ser Mater Sci Eng, vol. 1116, no. 1, p. 012186, Apr. 2021, doi: 10.1088/1757-899x/1116/1/012186. [CrossRef] [Google Scholar]
- P. N. Kuan, S. Chua, E. B. Safawi, and H. H. Wang, “A Comparative Study of Segmentation Algorithms in the Classification of Human Skin Burn Depth,” vol. 10, no. 1, 2020. [Google Scholar]
- A. Abubakar, M. Ajuji, and I. U. Yahya, “Comparison of deep transfer learning techniques in human skin burns discrimination,” Applied System Innovation, vol. 3, no. 2, pp. 1–15, Jun. 2020, doi: 10.3390/asi3020020. [Google Scholar]
- M. J. Jacobson et al., “Human-centered XAI for Burn Depth Characterization,” Oct. 2022, [Online]. Available: http://arxiv.org/abs/2210.13535 [Google Scholar]
- N. M. Abdulhadi, N. A. Ibraheem, and M. M. Hasan, “Burning Skin Detection System in Human Body,” ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, vol. 10, no. 2, pp. 169–178, Dec. 2022, doi: 10.14500/aro.10976. [CrossRef] [Google Scholar]
- Shubam, “Skin Burn Dataset,” Aug. 17, 2021. https://www.kaggle.com/datasets/shubhambaid/skin-burn-dataset (accessed Feb. 17, 2023). [Google Scholar]
- PelukBakar, “PB Computer Vision Project,” Dec. 2022. https://universe.roboflow.com/pelukbakar/pb-tkjgx (accessed Mar. 29, 2023). [Google Scholar]
- C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J Big Data, vol. 6, no. 1, Dec. 2019, doi: 10.1186/s40537-019-0197-0. [CrossRef] [PubMed] [Google Scholar]
- P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm Developments,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 1066–1073. doi: 10.1016/j.procs.2022.01.135. [Google Scholar]
- L. Wang, Y. Zhao, Z. Xiong, S. Wang, Y. Li, and Y. Lan, “Fast and precise detection of litchi fruits for yield estimation based on the improved YOLOv5 model,” Front Plant Sci, vol. 13, Aug. 2022, doi: 10.3389/fpls.2022.965425. [Google Scholar]
- L. Cao, X. Zheng, and L. Fang, “The Semantic Segmentation of Standing Tree Images Based on the Yolo V7 Deep Learning Algorithm,” Electronics (Switzerland), vol. 12, no. 4, Feb. 2023, doi: 10.3390/electronics12040929. [Google Scholar]
- S. Tan, G. Lu, Z. Jiang, and L. Huang, “Improved YOLOv5 network model and application in safety helmet detection,” in ISR 2021 - 2021 IEEE International Conference on Intelligence and Safety for Robotics, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 330–333. doi: 10.1109/ISR50024.2021.9419561. [Google Scholar]
- R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu, “A forest fire detection system based on ensemble learning,” Forests, vol. 12, no. 2, pp. 1–17, Feb. 2021, doi: 10.3390/f12020217. [Google Scholar]
- Y. Zhang, Y. Sun, Z. Wang, and Y. Jiang, “YOLOv7-RAR for Urban Vehicle Detection,” Sensors, vol. 23, no. 4, Feb. 2023, doi: 10.3390/s23041801. [Google Scholar]
- F. J. P. Montalbo, “A computer-aided diagnosis of brain tumors using a fine-tuned yolo-based model with transfer learning,” KSII Transactions on Internet and Information Systems, vol. 14, no. 12, pp. 4816–4834, Dec. 2020, doi: 10.3837/tiis.2020.12.011. [Google Scholar]
- K. Chen et al., “An Automatic Defect Detection System for Petrochemical Pipeline Based on Cycle-GAN and YOLO v5,” Sensors, vol. 22, no. 20, Oct. 2022, doi: 10.3390/s22207907. [Google Scholar]
- Y. Qing, W. Liu, L. Feng, and W. Gao, “Improved YOLO network for free-angle remote sensing target detection,” Remote Sens (Basel), vol. 13, no. 11, Jun. 2021, doi: 10.3390/rs13112171. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.