Open Access
Issue
E3S Web Conf.
Volume 426, 2023
The 5th International Conference of Biospheric Harmony Advanced Research (ICOBAR 2023)
Article Number 01077
Number of page(s) 9
Section Integrated Sustainable Science and Technology Innovation
DOI https://doi.org/10.1051/e3sconf/202342601077
Published online 15 September 2023
  1. H. Becker and L. E. Locascio, “Polymer microfluidic devices,” Talanta, 56. 267–287 (2002), doi: 10.1016/S0039-9140(01)00594-X. [CrossRef] [PubMed] [Google Scholar]
  2. K. Tappa and U. Jammalamadaka, “Novel biomaterials used in medical 3D printing techniques,” J. Funct. Biomater., 9, 17 (2018), doi: 10.3390/jfb9010017. [CrossRef] [Google Scholar]
  3. L. Chepelev et al., “Radiological society of north america (RSNA) 3D printing special interest group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios,” 3D Print. Med., 4, 1–38 (2018). [CrossRef] [Google Scholar]
  4. J. P. Lichtenberger, P. S. Tatum, S. Gada, M. Wyn, V. B. Ho, and P. Liacouras, “Using 3D Printing (Additive Manufacturing) to Produce Low-Cost Simulation Models for Medical Training,” Mil. Med., 183, 73–77 (2018), doi: 10.1093/milmed/usx142. [CrossRef] [Google Scholar]
  5. C. Lee Ventola, “Medical applications for 3D printing: Current and projected uses,” P T, 39, 704– 711 (2014). [PubMed] [Google Scholar]
  6. G. Weisgrab, A. Ovsianikov, and P. F. Costa, “Functional 3D Printing for Microfluidic Chips,” Adv. Mater. Technol., 4, 1900275 (2019), doi: 10.1002/admt.201900275. [CrossRef] [Google Scholar]
  7. C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “3D Printed Microfluidics for Biological Applications,” Lab on Chip, 15, 3627-3637 (2015), doi: 10.1039/x0xx00000x. [CrossRef] [PubMed] [Google Scholar]
  8. N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch, “The upcoming 3D-printing revolution in microfluidics,” Lab on Chip, 16, 1720–1742 (2016), doi: 10.1039/c6lc00163g. [CrossRef] [PubMed] [Google Scholar]
  9. K. Kitsakis, J. Kechagias, N. Vaxevanidis, and D. Giagkopoulos, “Tolerance Analysis of 3d-MJM parts according to IT grade,” IOP Conf. Ser. Mater. Sci. Eng., 161, (2016), doi: 10.1088/1757- 899X/161/1/012024. [Google Scholar]
  10. E. J. Mott et al., “Digital Micromirror Device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds,” Physiol. Behav., 61, 301-311 (2016), doi: 10.1016/j.msec.2015.11.071.Digital. [Google Scholar]
  11. A. Gosset, D. Barreiro-Villaverde, J. C. B. Permuy,M. Lema, A. Ares-Pernas, and M. J. A. López, “Experimental and numerical investigation of the extrusion and deposition process of a poly(Lactic acid) strand with fused deposition modeling,” Polymers, 12, 1–20 (2020), doi: 10.3390/polym12122885. [CrossRef] [PubMed] [Google Scholar]
  12. T. Finnes and T. Letcher, “High Definition 3D Printing-Comparing SLA and FDM Printing Technologies,” J. Undergrad. Res., 13, 3 (2015) [Google Scholar]
  13. R. Singh et al., “Powder bed fusion process in additive manufacturing: An overview,” Mater. Today Proc., 26, 3058–3070 (2019), doi: 10.1016/j.matpr.2020.02.635. [CrossRef] [Google Scholar]
  14. J. Liu, L. Sun, W. Xu, Q. Wang, S. Yu, and J. Sun, “Current advances and future perspectives of 3D printing natural-derived biopolymers,” Carbohydr. Polym., 207, 297–316 (2019), doi: 10.1016/j.carbpol.2018.11.077. [CrossRef] [Google Scholar]
  15. Z. Wang and Y. Yang, “Application of 3D Printing in Implantable Medical Devices,” Biomed Res. Int., 2021, 6653967 (2021), doi: 10.1155/2021/6653967. [Google Scholar]
  16. V. Tuncay and P. M. A. van Ooijen, “3D printing for heart valve disease: a systematic review,” Eur. Radiol. Exp., 3, 9 (2019), doi: 10.1186/s41747-018- 0083-0. [CrossRef] [Google Scholar]
  17. J. A. Calvo-Haro et al., “Conceptual evolution of 3D printing in orthopedic surgery and traumatology: from ‘do it yourself’ to ‘point of care manufacturing,’” BMC Musculoskelet. Disord., 22, 1–10 (2021), doi: 10.1186/s12891-021-04224-6. [CrossRef] [Google Scholar]
  18. S. Agarwal, S. Saha, V. K. Balla, A. Pal, A. Barui, and S. Bodhak, “Current Developments in 3D Bioprinting for Tissue and Organ Regeneration–A Review,” Front. Mech. Eng., 6, (2020), doi: 10.3389/fmech.2020.589171. [CrossRef] [Google Scholar]
  19. A. M. Sousa, A. M. Amaro, and A. P. Piedade, “3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties,” Polymers, 14, 1099 (2022), doi: 10.3390/polym14061099. [CrossRef] [PubMed] [Google Scholar]
  20. I. Ursan, L. Chiu, and A. Pierce, “Three- dimensional drug printing: A structured review.” Journal of the American Pharmacists Association, 53, 136–144 (2013), doi: 10.1331/JAPhA.2013.12217. [CrossRef] [PubMed] [Google Scholar]
  21. Y. E. Choonara, L. C. Du Toit, P. Kumar, P. P. D. Kondiah, and V. Pillay, “3D-printing and the effect on medical costs: a new era?,” Expert Rev. Pharmacoecon. Outcomes Res., 16, 23–32 (2016), doi: 10.1586/14737167.2016.1138860. [CrossRef] [PubMed] [Google Scholar]
  22. S. van den Driesche, F. Lucklum, F. Bunge, and M. J. Vellekoop, “3D printing solutions for microfluidic chip-to-world connections,” Micromachines, 9, 71 (2018), doi: 10.3390/mi9020071. [CrossRef] [PubMed] [Google Scholar]
  23. K. J. Krieger, N. Bertollo, M. Dangol, J. T. Sheridan, M. M. Lowery, and E. D. O’Cearbhaill, “Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing,” Microsystems Nanoeng., 5, 42 (2019), doi: 10.1038/s41378-019-0088-8. [CrossRef] [Google Scholar]
  24. D. Fan et al., “Progressive 3D Printing Technology and Its Application in Medical Materials,” Front. Pharmacol., 11, 1–12 (2020), doi: 10.3389/fphar.2020.00122. [CrossRef] [Google Scholar]
  25. C. I. Gioumouxouzis, C. Karavasili, and D. G. Fatouros, “Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies,” Drug Discov. Today, 24, 636–643 (2019), doi: 10.1016/j.drudis.2018.11.019. [CrossRef] [Google Scholar]
  26. E. Lepowsky and S. Tasoglu, “3D printing for drug manufacturing: A perspective on the future of pharmaceuticals,” Int. J. Bioprinting, 4, 1–13 (2018), doi: 10.18063/IJB.v4i1.119. [Google Scholar]
  27. Y. Bozkurt and E. Karayel, “3D printing technology; methods, biomedical applications, future opportunities and trends,” J. Mater. Res. Technol., 14, 1430–1450 (2021) doi: 10.1016/j.jmrt.2021.07.050. [CrossRef] [Google Scholar]
  28. S. Razavi Bazaz et al., “3D Printing of Inertial Microfluidic Devices,” Sci. Rep., 10, 1–14 (2020), doi: 10.1038/s41598-020-62569-9. [NASA ADS] [CrossRef] [Google Scholar]
  29. C. Vyas, G. Ates, E. Aslan, J. Hart, B. Huang, and P. Bartolo, “Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment,” 3D Print. Addit. Manuf., 7, 105–113 (2020), doi: 10.1089/3dp.2019.0091. [CrossRef] [Google Scholar]
  30. D. Shilo, O. Emodi, O. Blanc, D. Noy, and A. Rachmiel, “Printing the Future—Updates in 3D Printing for Surgical Applications,” Rambam Maimonides Med. J., 9, e0020 (2018), doi: 10.5041/rmmj.10343. [CrossRef] [Google Scholar]
  31. J. F. Rusling, “Developing Microfluidic Sensing Devices Using 3D Printing,” ACS Sensors, 3, 522– 526 (2018), doi: 10.1021/acssensors.8b00079. [CrossRef] [PubMed] [Google Scholar]
  32. P. Ahangar, M. E. Cooke, M. H. Weber, and D. H. Rosenzweig, “Current biomedical applications of 3D printing and additive manufacturing,” Appl. Sci., 9, 1713, (2019), doi: 10.3390/app9081713. [CrossRef] [Google Scholar]
  33. K. YAO et al., “Chitosan/Gelatin Network Based Biomaterials in Tissue Engineering,” Biomed. Eng. Appl. Basis Commun., 14, 115–121 (2002), doi: 10.4015/s1016237202000176. [CrossRef] [Google Scholar]
  34. S. Bhat and A. Kumar, “Biomaterials and bioengineering tomorrow’s healthcare,” Biomatter, 3, 1–12 (2013), doi: 10.4161/biom.25887. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.