Open Access
Issue
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
Article Number 03033
Number of page(s) 7
Section Transportation Science and Technology
DOI https://doi.org/10.1051/e3sconf/202342703033
Published online 13 September 2023
  1. Delatte, N.J. Concrete pavement design, construction, and performance. CRC Press. 2014. [CrossRef] [Google Scholar]
  2. Liang, M., Liang, P., Fan, W., Qian, C., Xin, X., Shi, J., Nan G. Thermo-rheological behavior and compatibility of modified asphalt with various styrene–butadiene structures in SBS copolymers. Materials & design. 2015 Dec 25;88:177–185. [CrossRef] [Google Scholar]
  3. Xue, W., Wang, L., Wang, D., Druta C. Pavement health monitoring system based on an embedded sensing network. Journal of Materials in Civil Engineering. 2014 Oct 1;26(10):04014072. [CrossRef] [Google Scholar]
  4. Sofi, A., Regita J.J., Rane B., Lau H.H.. Structural health monitoring using wireless smart sensor network–An overview. Mechanical Systems and Signal Processing. 2022 Jan 15;163:108113. [CrossRef] [Google Scholar]
  5. Downey, A., D’Alessandro A., Baquera M., García-Macías E., Rolfes D., Ubertini F., Laflamme S., Castro-Triguero R. Damage detection, localization and quantification in conductive smart concrete structures using a resistor mesh model. Engineering Structures. 2017 Oct 1;148:924–935. [CrossRef] [Google Scholar]
  6. Al-Dahawi A., Yıldırım G., Öztürk O., Şahmaran M. Assessment of self-sensing capability of Engineered Cementitious Composites within the elastic and plastic ranges of cyclic flexural loading. Construction and Building Materials. 2017 Aug 1;145:1–0. [CrossRef] [Google Scholar]
  7. Al-Dahawi A.M.. Effect of curing age on the self-sensing behavior of carbon-based engineered cementitious composites (ECC) under monotonic flexural loading scenario. InMATEC Web of Conferences 2018 (Vol. 162, p. 01034). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  8. Yıldırım, G., Sarwary M.H., Al-Dahawi A., Öztürk O., Anıl Ö., Şahmaran M. Piezoresistive behavior of CF-and CNT-based reinforced concrete beams subjected to static flexural loading: Shear failure investigation. Construction and Building Materials. 2018 Apr 20;168:266–279. [CrossRef] [Google Scholar]
  9. Sarwary M.H., Yıldırım G., Al-Dahawi A., Anıl Ö., Khiavi K.A., Toklu K., Şahmaran M. Self-sensing of flexural damage in large-scale steel-reinforced mortar beams. ACI Materials Journal. 2019 Jul 1;116(4):209–221. [CrossRef] [Google Scholar]
  10. Al-Dahawi, A. Multifunctional Cementitious Composites for Damage-Resistance Highway Structures, in Civil Engineering. Univesity of Gaziantep: Gaziantep, Turkey. 2016. [Google Scholar]
  11. Al-Qadi I., Wang H., Ouyang Y., Grimmelsman K., Purdy J.E.. LTBP Program's Literature Review on Weigh-in-Motion Systems. 2016. [Google Scholar]
  12. Ghadhban, D., H.H. Joni, and A.M. Al-Dahawi. Carbon Fiber-Based Cementitious Composites for Traffic Detection and Weighing In Motion. Engineering and Technology Journal. 2021; 39(8): 1250–1256. [CrossRef] [Google Scholar]
  13. Sujon, M. and F. Dai. Application of weigh-in-motion technologies for pavement and bridge response monitoring: State-of-the-art review. Automation in Construction. 2021. [PubMed] [Google Scholar]
  14. Andrle, S., B. McCall, and D. Kroeger. Application of weigh-in-motion (WIM) technologies in overweight vehicle enforcement. In 3rd International Conference on Weigh-in-Motion (ICWIM3). Citeseer. 2002. [Google Scholar]
  15. Lehman, Maria. The American Society of Civil Engineers’ report card on America’s infrastructure. In: Women in Infrastructure. Cham: Springer International Publishing. 2022. [Google Scholar]
  16. Zhang, Yuhuan; LU, Huapu; QU, Wencong. Geographical detection of traffic accidents spatial stratified heterogeneity and influence factors. International journal of environmental research and public health. 2020; 17(2): 572. [CrossRef] [PubMed] [Google Scholar]
  17. Han, B., Wang, Y., Dong, S., Zhang, L., Ding, S., Yu, X., Ou J. Smart concretes and structures: A review. Journal of intelligent material systems and structures. 2015 Jul;26(11):1303–1345. [CrossRef] [Google Scholar]
  18. Li G.Y., Wang P.M., Zhao X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites. 2007 May 1;29(5):377–382. [CrossRef] [Google Scholar]
  19. Gupta, S., Lin Y.A., Lee H.J., Buscheck J., Wu R., Lynch J.P., Garg N., Loh K.J. In situ crack mapping of large-scale self-sensing concrete pavements using electrical resistance tomography. Cement and Concrete Composites. 2021 Sep 1;122:104154. [CrossRef] [Google Scholar]
  20. Wang, H., Shi, F., Shen, J., Zhang, A., Zhang, L., Huang, H., Liu, J., Jin, K., Feng, L., Tang Z. Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete. Cement and Concrete Composites. 2021 May 1;119:104001. [CrossRef] [Google Scholar]
  21. Armoosh S.R., Oltulu M., Alameri I., Mohammed H.M., Karacali T. The combined effect of carbon fiber and carbon nanotubes on the electrical and self-heating properties of cement composites. Journal of Intelligent Material Systems and Structures. 2022 Nov;33(18):2271–2284. [CrossRef] [Google Scholar]
  22. Al-Dahawi A., Öztürk O., Emami F., Yıldırım G., Şahmaran M. Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Construction and Building Materials. 2016 Feb 1;104:160–168. [CrossRef] [Google Scholar]
  23. Celik D.N., Yıldırım G., Al-Dahawi A., Ulugöl H., Han B., Şahmaran M. Self-monitoring of flexural fatigue damage in large-scale steel-reinforced cementitious composite beams. Cement and Concrete Composites. 2021 Oct 1;123:104183. [CrossRef] [Google Scholar]
  24. Dong, W., Li, W., Zhu, X., Sheng, D., Shah S.P. Multifunctional cementitious composites with integrated self-sensing and hydrophobic capacities toward smart structural health monitoring. Cement and Concrete Composites. 2021 Apr 1;118:103962. [CrossRef] [Google Scholar]
  25. Al-Dahawi A., Sarwary M.H., Öztürk O., Yıldırım G., Akın A., Şahmaran M., Lachemi M. Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials. Smart Materials and Structures. 2016 Sep 16;25(10):105005. [CrossRef] [Google Scholar]
  26. Yıldırım, G., Öztürk, O., Al-Dahawi A., Ulu A.A., Şahmaran M. Self-sensing capability of Engineered Cementitious Composites: Effects of aging and loading conditions. Construction and Building Materials. 2020 Jan 20;231:117132. [CrossRef] [Google Scholar]
  27. Shi, Z.-Q. and D. Chung. Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion. Cement and Concrete Research. 1999; 29(3): 435–439. [CrossRef] [Google Scholar]
  28. Han, B. and J. Ou. Embedded piezoresistive cement-based stress/strain sensor. Sensors and Actuators A: Physical. 2007; 138(2): 294–298. [CrossRef] [Google Scholar]
  29. Chung, D.D.L. Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. International Journal of Smart and Nano Materials. 2021; 12(1): 1–19. [CrossRef] [Google Scholar]
  30. Xu, J., Yin, T., Wang, Y., Liu L. Anisotropic electrical and piezoresistive sensing properties of cement-based sensors with aligned carbon fibers. Cement and Concrete Composites. 2021 Feb 1;116:103873. [CrossRef] [Google Scholar]
  31. Li, W., Dong, W., Guo, Y., Wang, K., Shah S.P. Advances in multifunctional cementitious composites with conductive carbon nanomaterials for smart infrastructure. Cement and Concrete Composites. 2022 Apr 1;128:104454. [CrossRef] [Google Scholar]
  32. Nuaklong, P., Wongsa, A., Boonserm, K., Ngohpok, C., Jongvivatsakul, P., Sata, V., Sukontasukkul, P., Chindaprasirt P. Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. Journal of Building Engineering. 2021 Sep 1;41:102403. [CrossRef] [Google Scholar]
  33. Karkush M.O., Abdulkareem M.S. Deep remediation and improvement of soil contaminated with residues oil using lime piles. International Journal of Environmental Science and Technology. 2019 Nov;16:7197–7206. [CrossRef] [Google Scholar]
  34. Karkush M.O., Yassin S.A.. Using sustainable material in improvement the geotechnical properties of soft clayey soil. Journal of Engineering Science and Technology. 2020 Aug;15(4):2208–2222. [Google Scholar]
  35. Karkush M.O., Ali H.A., Ahmed B.A. Improvement of unconfined compressive strength of soft clay by grouting gel and silica fume. In Proceedings of China-Europe Conference on Geotechnical Engineering: Volume 1 2018 (pp. 546–550). Springer International Publishing. [CrossRef] [Google Scholar]
  36. Karkush M.O., Almurshedi A.D., Karim H.H. Investigation of the Impacts of Nanomaterials on the Micromechanical Properties of Gypseous Soils. Arabian Journal for Science and Engineering. 2023 Jan;48(1):665–675. [CrossRef] [Google Scholar]
  37. Chung, Deborah DL. Composite materials: science and applications. Springer Science & Business Media. 2010. [CrossRef] [Google Scholar]
  38. YI, Fang; Kaiqin, Chen; Man, Zhu. Preparation and mechanical-electrical performance of carbon fibre sensing concrete. Ceramics–Silikáty. 2022; 66(1): 28–35. [Google Scholar]
  39. ASTM-C150. Standard specification for Portland cement, in Annual book of ASTM standards. 2007. [Google Scholar]
  40. ASTM-C618. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual book of ASTM standards. 2005. [Google Scholar]
  41. ASTM-C1240-20. Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM: USA. 2020. [Google Scholar]
  42. Al-Dahawi, A. Multifunctional Cementitious Composites For Damage-Resistant Highway Structures. in Civil Engineering, Univesity of Gaziantep: Gaziantep, Turkey. 2016. [Google Scholar]
  43. Mohammed, A.K., Development of Optimal Deflection Hardening and Self-Sensing Cementitious Composites for Concrete Pavement. 2020. [Google Scholar]
  44. Banyhussan, Q.S. Development of Optimal Strain Hardening Cementitious Composites Mixture for Highway Bridge Decks to Address Shrinkage Cracking. 2017. [Google Scholar]
  45. AASHTO, Transportation Officials, DC, Policy on geometric design of highways and streets. 2017; 1(990): 158. [Google Scholar]
  46. Huang, Y.H. Pavement analysis and design. Pearson Prentice Hall Upper Saddle River, NJ. 2004. [Google Scholar]
  47. SCRB. Highway Design Manual in The Vehicle. Ministry of Housing, Construction and Municipality, Department of Planning and Studies: Iraq. 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.