Open Access
Issue
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
Article Number 04006
Number of page(s) 9
Section Environment and Infrastructures
DOI https://doi.org/10.1051/e3sconf/202342704006
Published online 13 September 2023
  1. Foroudi, A., and Barati, R. Experimental study of cavitation index in an ogee spillway by considering convergence angle of sidewalls. Water Supply. 2022; 22(6): 5729–5738. [CrossRef] [Google Scholar]
  2. Muhsun, S. S., and Al-Sharify, Z. T. Experimental work and CFD model for flowrate estimating over ogee spillway under longitudinal slope effect. International Journal of Civil Engineering and Technology. 2018; 9(13): 430–439. [Google Scholar]
  3. Peltier, Y., Dewals, B., Archambeau, P., Pirotton, M., and Erpicum, S. (2018). Pressure and velocity on an ogee spillway crest operating at high head ratio: experimental measurements and validation. Journal of Hydro-environment Research. 2018; 19: 128–136. [CrossRef] [Google Scholar]
  4. Daneshfaraz, R., Ghaderi, A., Akhtari, A., and Di Francesco, S. on the effect of block roughness in ogee spillways with flip buckets. Fluids. 2020; 5(4):182 [CrossRef] [Google Scholar]
  5. Morales, V., Tokyay, T. E., and Garcia, M. Numerical modeling of ogee crest spillway and tainter gate structure of a diversion dam on Canar River, Ecuador. In international conference on water resources CMWR. 2012; 19(1). [Google Scholar]
  6. Saneie, M., SheikhKazemi, J., and Azhdary Moghaddam, M. Scale effects on the discharge coefficient of ogee spillway with an arc in plan and converging training walls. Civil Engineering Infrastructures Journal. 2016; 49(2): 361–374. [Google Scholar]
  7. Yildiz, A., Yarar, A., Kumcu, S. Y., and Marti, A. I. Numerical and ANFIS modeling of flow over an ogee-crested spillway. Applied Water Science. 2020; 10(4): 1–10. [CrossRef] [Google Scholar]
  8. Salahaldain, Z., Naimi, S. and Alsultani, R. Estimation and Analysis of Building Costs Using Artificial Intelligence Support Vector Machine. Mathematical Modelling of Engineering Problems. 2023; 10(2): 405–411 [CrossRef] [Google Scholar]
  9. Peterka, A. J. Hydraulic Design of Stilling Basins and Energy Dissipators. United States Department of the Interior, Bureau of Reclamation, Engineering Monograph. 1958; No. 25, Denver CO, 4th revised printing. [Google Scholar]
  10. Samadi, M., Jabbari, E., Azamathulla, H. M., and Mojallal, M. Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks. Engineering Applications of Computational Fluid Mechanics. 2015; 9(1): 291–300. [CrossRef] [Google Scholar]
  11. Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, J., and Azamathulla, H. M. Experimental investigation on effective scouring parameters downstream from stepped spillways. Water supply. 2020; 20(5): 1988–1998. [CrossRef] [Google Scholar]
  12. Nou, M. R. G., Zolghadr, M., Bajestan, M. S., and Azamathulla, H. M. Application of ANFIS–PSO hybrid algorithm for predicting the dimensions of the downstream scour hole of ski-jump spillways. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2021; 45(1): 1845–1859. [CrossRef] [Google Scholar]
  13. Alsultani, R., Karim, I. R., and Khassaf, S. I. (2022). Dynamic Response of Deepwater Pile Foundation Bridge Piers under Current-wave and Earthquake Excitation. Engineering and Technology Journal. 2022; 40(11): 1589–1604. [CrossRef] [Google Scholar]
  14. Asadi, M. E., Naeeni, S. T. O., and Kerachian, R. The effects of splitters on the downstream scour hole of overflow spillways: application of support vector regression. Water Supply. 2022; 22(2): 1905–1929. [CrossRef] [Google Scholar]
  15. Al-Zubaidy, R., Al-Murshidi, K. R., and Khlif, T. H. Energy dissipation by using different sizes and configurations of direction diverting blocks on spillways. Journal of Babylon University/Engineering Sciences. 2014. [Google Scholar]
  16. Valero, D., Bung, D. B., and Crookston, B. M. Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways. Journal of Hydraulic Engineering. 2018; 144(7), 04018036. [CrossRef] [Google Scholar]
  17. Saki, N., and Shafai Bejestan, M. Experimental Investigation of the Wedge-Shaped Deflector Installation Position Effects on the Flip Bucket Spillway Energy Dissipation. Journal of Hydraulics. 2022; 17(2): 87–106. [Google Scholar]
  18. Tuna, M. Effect Of Offtake Channel Base Angle of Stepped Spillway on Scour Hole. Iranian Journal of Science and Technology. Transactions of Civil Engineering. 2012. [Google Scholar]
  19. Young, M.F. Feasibility Study of a Stepped Spillway. Proceedings, Hydraulics Division Speciality Conference, ASCE, New York. 2022; 3(1): 96–106. [Google Scholar]
  20. Alsultani, R., Karim, I. R., and Khassaf, S. I. Mathematical formulation using experimental study of hydrodynamic forces acting on substructures of coastal pile foundation bridges during earthquakes: As a model of human bridge protective. Resmilitaris. 2022; 12(2): 6802–6821. [Google Scholar]
  21. Sorensen, R.M. Stepped Spillway Hydraulic Model Investigation. Journal of Hydraulic Engineering, ASCE. 2020; 111(12): 1461–1472. [Google Scholar]
  22. Alsultani, R., and Khassaf, S. I. Nonlinear Dynamic Response Analysis of Coastal Pile Foundation Bridge Pier Subjected to Current, Wave and Earthquake Actions: As a model of civilian live. Resmilitaris. 2022; 12(2): 6133–6148. [Google Scholar]
  23. Eloubaidy, A. F., Al-Baidhani, J. H., and Ghazali, A. H. Dissipation of hydraulic energy by curved baffle blocks. Pertanika Journal Science Technology. 1999; 7(1): 69–77. [Google Scholar]
  24. Maatooq, J., and Taleb, E. The effects of baffle blocks locations and blockage ratio on the sequent depth and velocity distribution of forced hydraulic jump. 2018. [Google Scholar]
  25. Alsultani, R., Karim, I. R., and Khassaf, S. I. Dynamic Response Analysis of Coastal Piled Bridge Pier Subjected to Current, Wave and Earthquake Actions with Different Structure Orientations. International Journal of Concrete Structures and Materials. 2023; 17(1): 1–15. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.