Open Access
Issue
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
Article Number 04008
Number of page(s) 9
Section Environment and Infrastructures
DOI https://doi.org/10.1051/e3sconf/202342704008
Published online 13 September 2023
  1. Karkush M.O., Ahmed M.D., Al-Ani S. Magnetic Field Influence on The Properties of Water Treated by Reverse Osmosis. Engineering, Technology & Applied Science Research. 2019 Aug 1;9(4). [Google Scholar]
  2. Jawad S.I., Karkush M., Kaliakin V.N.. Alteration of physicochemical properties of tap water passing through different intensities of magnetic field. Journal of the Mechanical Behavior of Materials. 2023 Mar 7;32(1):20220246. [CrossRef] [Google Scholar]
  3. AL-Ani S.M., Karkush M.O., Zhussupbekov A., Al-Hity A.A.. Influence of magnetized water on the geotechnical properties of expansive soil. In Modern Applications of Geotechnical Engineering and Construction: Geotechnical Engineering and Construction 2021 (pp. 39–50). Springer Singapore. [CrossRef] [Google Scholar]
  4. Karkush M.O., RESOL D.A.. Geotechnical properties of sandy soil contaminated with industrial wastewater. Journal of Engineering Science and Technology. 2017 Dec 1;12(12):3136–3147. [Google Scholar]
  5. Karkush M.O., Ali S.D.. Remediation of clayey soil contaminated with copper sulfate using washing-enhanced electrokinetics technique. Russian Journal of Electrochemistry. 2019 Dec;55:1381–1390. [CrossRef] [Google Scholar]
  6. Dritselis, C. D. Large eddy simulation of turbulent channel flow with transverse roughness elements on one wall. International Journal of Heat and Fluid Flow. 2014; 50(1): 225–239. [CrossRef] [Google Scholar]
  7. Shamloo, H., and Pirzadeh, B. Analysis of roughness density and flow submergence effects on turbulence flow characteristics in open channels using a large eddy simulation. Applied Mathematical Modelling. 2015; 39(3–4): 1074–1086. [CrossRef] [Google Scholar]
  8. Briggs, S., Karney, B. W., and Sleep, B. E. Numerical modeling of the effects of roughness on flow and eddy formation in fractures. Journal of Rock Mechanics and Geotechnical Engineering. 2017; 9(1): 105–115. [CrossRef] [Google Scholar]
  9. Servini, P., Smith, F. T., and Rothmayer, A. P. The impact of static and dynamic roughness elements on flow separation. Journal of Fluid Mechanics. 2017; 830(1): 35–62. [CrossRef] [Google Scholar]
  10. Prasad, K., Sridevi, T., and Sadhuram, Y. Influence of dam-controlled river discharge and tides on salinity intrusion in the Godavari estuary, east coast of India. Journal of Waterway, Port, Coastal, and Ocean Engineering. 2018; 144(2):04017049 [CrossRef] [Google Scholar]
  11. He, W., Zhang, J., Yu, X., Chen, S., and Luo, J. Effect of runoff variability and sea level on saltwater intrusion: a case study of Nandu River Estuary, China. Water Resources Research. 2018; 54(12): 9919–9934. [CrossRef] [Google Scholar]
  12. Ospino, S., Restrepo, J. C., Otero, L., Pierini, J., and Alvarez-Silva, O. Saltwater intrusion into a river with high fluvial discharge: a microtidal estuary of the Magdalena River, Colombia. Journal of Coastal Research. 2018; 34(6): 1273–1288. [CrossRef] [Google Scholar]
  13. De Marchis, M., Milici, B., and Napoli, E. Large eddy simulations on the effect of the irregular roughness shape on turbulent channel flows. International Journal of Heat and Fluid Flow. 2019: 80(1): 108494. [CrossRef] [Google Scholar]
  14. Yang, A. J. K., Tedford, E. W., & Lawrence, G. A. The spatial evolution of velocity and density profiles in an arrested salt wedge. Theoretical and Applied Mechanics Letters. 2019; 9(6): 403–408. [CrossRef] [Google Scholar]
  15. Zachopoulos, K., Kokkos, N., & Sylaios, G. Salt wedge intrusion modeling along the lower reaches of a Mediterranean river. Regional Studies in Marine Science. 2020; 39(1):101467 [CrossRef] [Google Scholar]
  16. Cavalcante, D. M., Chaves, M. T. L., Campos, G. M., Cantalice, J. R. B., and Junior, G. B. Sediment transport and roughness coefficients generated by flexible vegetation patches in the emergent and submerged conditions in a semiarid alluvial open-channel. Ecological Indicators. 2021; 125(1):107472 [CrossRef] [Google Scholar]
  17. Rao, P. L., Prasad, B. S. S., Sharma, A., & Khatua, K. K. Experimental and numerical analysis of velocity distribution in a compound meandering channel with double layered rigid vegetated flood plains. Flow Measurement and Instrumentation. 2022; 83(1):102111 [CrossRef] [Google Scholar]
  18. Alwan, I. A., and Azzubaidi, R. Z. A Computational Fluid Dynamics Investigation of using Large-Scale Geometric Roughness Elements in Open Channels. Journal of Engineering. 2021; 27(1): 35–44. [CrossRef] [Google Scholar]
  19. Shaheed, A. K., and Azzubaidi, R. Z. CFD Simulation Model of Salt Wedge Propagation. Journal of Engineering. 2022; 28(1). [Google Scholar]
  20. Al-Fuady, M. F. and Azzubaidi, R. Z. An Experimental Study on Investigating and Controlling Salt Wedge Propagation. Journal IOP Conf. Series: Earth and Environmental Science. 2021; 779. [Google Scholar]
  21. Versteeg, H. K., and Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson Education, Limited, London, England. 2007. [Google Scholar]
  22. Matsson, J.E. An Introduction to ANSYS Fluent, United States of America. 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.