Open Access
Issue
E3S Web Conf.
Volume 428, 2023
2023 Research, Invention, and Innovation Congress (RI2C 2023)
Article Number 01003
Number of page(s) 9
Section Energy Technology
DOI https://doi.org/10.1051/e3sconf/202342801003
Published online 14 September 2023
  1. A.N. Bukkapatnam, R. Sriramula, Y.J. Kim, Gasoline direct injection engines: Advancements, challenges, and future perspectives, Journal of Energy Resources Technology, 142, 6, (2020): 061201 [Google Scholar]
  2. S. Singh, M.R. Golovitchev, A.S.G. Wijewardane, Impact of fuel properties on the spray characteristics and combustion of a gasoline direct injection engine, Energy Conversion and Management, 215 (2020): 112996 [Google Scholar]
  3. J. Guo, Y. Hu, Z. Liu, Effect of gasoline direct injection timing on mixture formation, combustion, and emissions in a gasoline direct injection engine, 266 (2020): 117088 [Google Scholar]
  4. Y. Zhang, C. Chen, Z. Wang, X. Han, An experimental investigation on the combustion and emission characteristics of a gasoline direct injection engine fueled with hydrogen-enriched gasoline, 246 (2019): 78-86 [Google Scholar]
  5. K. Min, M.Y. Kim, D. Kim, S. Kwon, Evaluation of particulate matter emissions from gasoline direct injection vehicles under various driving conditions, Environmental Pollution, 269 (2021): 116180 [Google Scholar]
  6. K.H. Kim M.Y. Kim, Emissions characteristics of nanoparticles from gasoline direct injection engines, Science of The Total Environment, 725 (2020): 138293 [CrossRef] [Google Scholar]
  7. T.D. Durbin, C.R. Bartoli, J.M. Norbeck, Impact of ethanol and aromatic hydrocarbon content on particulate matter emissions from a GDI engine, Energy & Fuels, 33, 3, (2019): 2483-2491 [Google Scholar]
  8. F. Yang, C. Xu, Y. Li, H. Xu, L. Li, Influence of gasoline composition and operating parameters on the formation of particulate matter in gasoline direct injection engines, 291 (2021): 120029 [Google Scholar]
  9. M. Zheng, G.T. Reader, Nitrogen oxide emissions from gasoline direct injection engines: Mechanisms, control strategies, and future perspectives, Applied Energy, 291 (2021): 116857 [CrossRef] [Google Scholar]
  10. C.P. Kolodziej, T.D. Durbin, J.M. Norbeck, Impact of fuel composition on the formation and emissions of PM from a gasoline direct injection engine, Environmental Science & Technology, 54, 9 (2020): 5732-5740 [Google Scholar]
  11. M. Cheng, L. Hao, L. Li, S. Li, H. Liu, K. Cen, Realworld emissions of non-methane volatile organic compounds from gasoline direct injection vehicles, Science of The Total Environment, 773 (2021): 145565 [Google Scholar]
  12. P. Přikryl, M. Vojtíšek-Lom, M. Pohořelý, Particle emissions from internal combustion engines: A review, Atmospheric Environment, 259 (2021): 118482 [Google Scholar]
  13. H. Zhang, M. Yao, H. Liu, M. Zheng, Emissions and characteristics of particulate matter from a gasoline direct injection engine at different operating conditions, Journal of Environmental Sciences, 90 (2020): 372-381 [Google Scholar]
  14. X. Song, H. Liu, Q. Zhang, Experimental investigation of particulate emissions from a gasoline direct injection engine fueled with gasoline-ethanol blends, 241 (2019): 1056-1062 [Google Scholar]
  15. H. Zhang, M. Yao, H. Liu, Investigation of the formation and evolution of particulate matter in a gasoline direct injection engine, 261 (2020): 116433 [Google Scholar]
  16. M. Zheng, G.T. Reader, Experimental investigation of particulate emissions from a gasoline direct injection engine during cold-start, 253 (2019): 189-198 [Google Scholar]
  17. X. Ma, Y. Xue, H. Zhang, S. Wu, Z. Huang, Effect of injection timing on particulate matter emissions from gasoline direct injection engine under cold-start conditions, 285 (2021): 119023 [Google Scholar]
  18. Y. Qiao, J. Cai, J. Lv, B. Liu, Z. Huang, Effect of ethanol blending on the morphology and nanostructure of soot particles emitted from a gasoline direct injection engine, 273 (2020): 117779 [Google Scholar]
  19. J. Chen, M. Mousazadeh, A. Sarathy, Characterization of particulate emissions from a gasoline direct injection engine: Influence of operating conditions and fuel components, 261 (2020): 116385 [Google Scholar]
  20. G. Zhang, Y. Zhang, Z. Wang, H. Yao, Z. Huang, Effect of engine operating conditions on particulate matter emissions from a gasoline direct injection engine, 260 (2020): 116208 [Google Scholar]
  21. A.A. Omidvarborna, A. Ahmed, D.A. Nguyen, G.K. Anderson, In-cylinder particle number evolution in a gasoline direct injection engine, 269 (2020): 117457117457 [Google Scholar]
  22. Y. Qiao, J. Cai, J. Lv, B. Liu, Z. Huang, Effect of ethanol blending on the morphology and nanostructure of soot particles emitted from a gasoline direct injection engine, 273 (2020): 117779-117779 [Google Scholar]
  23. L. Li, C. Huang, Y. Lu, M. Liu, J. Peng, C. Zheng, Effects of fuel injection strategy on soot emissions in a gasoline direct injection engine, Energy Conversion and Management, 242 (2021): 114276 [Google Scholar]
  24. S. Zhang, G. Song, X. Huang, Z. Zhang, J. Zhang, Effects of injection strategy on soot emissions from a gasoline direct injection engine during start-up, 233 (2018): 445-454 [Google Scholar]
  25. K. Borkar, S.W. King, R.R. Steeper, C.A. Gabrys, Effect of injection timing on soot formation in a gasoline direct-injection engine using in-cylinder imaging, SAE International Journal of Engines, 8, 2 (2015): 1020-1032 [Google Scholar]
  26. H. Wu, H. Wang, W. Zhang, Y. Zhang, M. Wei, Effect of injection timing on soot emission and combustion process in a GDI engine, 156 (2015): 97-105 [Google Scholar]
  27. J.H. Lee, S. Choi, K. Lee, C.S. Lee, Characterization of particle emissions from a gasoline direct injection engine fueled with ethanol-gasoline blends, IEEE Transactions on Transportation Electrification, 7, 4 (2021): 1516-1523 [CrossRef] [Google Scholar]
  28. J. Kim, C. Yoo, S. Jeon, H. Bae, Impact of ethanol blend ratio on particulate matter emissions from a gasoline direct injection engine, IEEE Transactions on Transportation Electrification, 6, 3 (2020): 1005-1012 [Google Scholar]
  29. S. Shamsudeen, P. Bharath, A. Sivakumar, Influence of fuel-air mixing on soot formation in a gasoline direct injection engine, IEEE Access, 8 (2020): 2375623764 [Google Scholar]
  30. P. Prikhodko, S. Kozlov, D. Kosarev, Effect of injection timing on soot formation in a gasoline direct injection engine, in Proceedings of the 21st International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Russia, (2020): 253-258 [Google Scholar]
  31. S. Song, S. Gao, W. Yan, J. Zheng, Study on the effect of gasoline particulate filters on particulate matter emissions from gasoline direct injection engines, in Proceedings of the 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Chengdu, China, (2021): 1-6 [Google Scholar]
  32. Y. Lee, S. Kim, S. Han, Investigation of the effect of gasoline direct injection on particulate emissions and after-treatment system performance, in Proceedings of the 2020 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, (2020): 1-6 [Google Scholar]
  33. C. Liu, J. Li, Y. Li, J. Wang, Effect of exhaust gas recirculation on particulate matter emissions from a gasoline direct injection engine, in Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, (2019): 1-6 [Google Scholar]
  34. Y. Liu, Q. Wang, Y. Xu, Z. Li, Experimental investigation on particulate matter reduction by nonthermal plasma in a gasoline direct injection engine, in Proceedings of the 2020 IEEE Transportation Electrification Conference and Expo (ITEC), Novi, MI, USA, (2020): 1-5 [Google Scholar]
  35. H. Zhao, S. Yuan, H. Li, Y. Zhang, Experimental study on NOx reduction using non-thermal plasma in a gasoline direct injection engine, in Proceedings of the 2020 IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Taiyuan, China, (2020): 1-4 [Google Scholar]
  36. W. Zhang, H. Zhao, C. Geng, Experimental investigation on non-thermal plasma assisted NOx reduction in a gasoline direct injection engine, in Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Novi, MI, USA, (2019): 1-6 [Google Scholar]
  37. X. Chen, M. Liu, Y. Zhao, X. Wang, Non-thermal plasma technology for diesel engine exhaust gas treatment: A review, in Proceedings of the 2020 IEEE International Conference on Mechatronics and Automation (ICMA), Xi’an, China, (2020): 1-6 [Google Scholar]
  38. S. Park, S. Lee, J. Oh, J. Kim, Evaluation of nonthermal plasma on NOx removal for diesel engine exhaust gas, in Proceedings of the 2020 IEEE International Conference on Plasma Science (ICOPS), Chicago, IL, USA, (2020): 1-4 [Google Scholar]
  39. K. Park, J. Kim, J. Lee, Y. Kim, Reduction of ultrafine particles using a non-thermal plasma system for GDI engine exhaust, in Proceedings of the 2020 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Nanjing, China, (2020): 1-5 [Google Scholar]
  40. A.D. Srinivasan B.S. Rajanikanth, Pulsed plasma treatment for NOx reduction from filtered/unfiltered stationary diesel engine exhaust, in Proceedings of the 2007b IEEE Industry Applications Conference, New Orleans, LA, (2007): 1893-190 [Google Scholar]
  41. E. Delikonstantis, M. Scapinello, G.D. Stefanidis, Low energy cost conversion of methane to ethylene in a hybrid plasma-catalytic reactor system, Fuel Processing Technology, 177 (2018): 26-36 [Google Scholar]
  42. T. Nozaki, A. Hattori, K. Okazaki, Partial oxidation of methane using a microscale non-equilibrium plasma reactor, Catalysis Today, 98, 4 (2004): 607-616 [CrossRef] [Google Scholar]
  43. J. Benedikt, Plasma-chemical reactions: low pressure acetylene plasmas, Journal of Physics D: Applied Physics, 43, 4 (2010): 043001 [CrossRef] [Google Scholar]
  44. T. Iamcheerangkoon, N. Chollacoop, B. Sawatmongkhon, T. Wongchang, S. Sittichompoo, S. Chuepeng, K. Theinnoi, Promotion of the NO-to-NO2 Conversion of a Biofueled Diesel Engine with Nonthermal Plasma-Assisted Low-Temperature Soot Incineration of a Diesel Particulate Filter, Energies, 15, 24 (2022): 9330 [CrossRef] [Google Scholar]
  45. K. Yoshida, Diesel NOx aftertreatment by combined process using temperature swing adsorption, nonthermal plasma, and NOx recirculation: NOx removal accelerated by conversion of NO to NO2, Journal of the Taiwan Institute of Chemical Engineers, 44, 6 (2013): 1054-1059 [CrossRef] [Google Scholar]
  46. S. Heijkers, M. Aghaei, A. Bogaerts, Plasma-Based CH4 Conversion into Higher Hydrocarbons and H2: Modeling to Reveal the Reaction Mechanisms of Different Plasma Sources, The Journal of Physical Chemistry C, 124, 13 (2020): 7016-7030 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.