Open Access
Issue |
E3S Web Conf.
Volume 428, 2023
2023 Research, Invention, and Innovation Congress (RI2C 2023)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 9 | |
Section | Technology for Environment and Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202342802003 | |
Published online | 14 September 2023 |
- J.E. Hyeon, S.K. Shin, S.O. Han, Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization, Biotechnology journal, 11, 11 (2016): 1386-1396 [CrossRef] [PubMed] [Google Scholar]
- S. Ariaeenejad, E. Motamedi, G. Hosseini Salekdeh, Stable cellulase immobilized on graphene oxide@CMC-g-poly(AMPS-co-AAm) hydrogel for enhanced enzymatic hydrolysis of lignocellulosic biomass, Carbohydrate Polymers, 230 (2020): 115661 [CrossRef] [PubMed] [Google Scholar]
- M. Alexandri, R. Schneider, H. Papapostolou, D. Ladakis, A. Koutinas, J. Venus, Restructuring the conventional sugar beet industry into a novel biorefinery: fractionation and bioconversion of sugar beet pulp into succinic acid and value-added coproducts, ACS Sustainable Chemistry & Engineering, 7, 7 (2019): 6569-6579 [CrossRef] [Google Scholar]
- R. Alayoubi, N. Mehmood, E. Husson, A. Kouzayha, M. Tabcheh, L. Chaveriat, C. Sarazin, I. Gosselin, Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield, Renewable Energy, 145 (2020): 1808-1816 [CrossRef] [Google Scholar]
- Z. Ziaei-Rad, J. Fooladi, M. Pazouki, S.N. Gummadi, Lignocellulosic biomass pre-treatment using low-cost ionic liquid for bioethanol production: An economically viable method for wheat straw fractionation, Biomass and Bioenergy, 151 (2021): 106140 [CrossRef] [Google Scholar]
- M. Balat, Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review, Energy Conversion and Management, 52, 2 (2011): 858-875 [CrossRef] [Google Scholar]
- A. Limayem, S.C. Ricke, Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects, Progress in Energy and Combustion Science, 38, 4 (2012): 449467 [CrossRef] [Google Scholar]
- A. Stark, Ionic liquids in the biorefinery: a critical assessment of their potential, Energy & Environmental Science, 4, 1 (2011): 19-32 [CrossRef] [Google Scholar]
- Y. Sui, Y. Cui, G. Xia, X. Peng, G. Yuan, G. Sun, A facile route to preparation of immobilized cellulase on polyurea microspheres for improving catalytic activity and stability, Process Biochemistry, 87 (2019): 73-82 [CrossRef] [Google Scholar]
- T. Eom, S. Chaiprapat, B. Charnnok, Enhanced enzymatic hydrolysis and methane production from rubber wood waste using steam explosion, Journal of Environmental Management, 235 (2019): 231239 [Google Scholar]
- Z. Qiu, G.M. Aita, M.S. Walker, Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse, Bioresource Technology, 117 (2012): 251256 [Google Scholar]
- R.H.Y. Chang, J. Jang, K.C.W. Wu, Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion, Green Chemistry, 13, 10 (2011): 2844-2850 [CrossRef] [Google Scholar]
- W. Huang, S. Pan, Y. Li, L. Yu, R. Liu, Immobilization and characterization of cellulase on hydroxy and aldehyde functionalized magnetic Fe2O3/Fe3O4 nanocomposites prepared via a novel rapid combustion process, International Journal of Biological Macromolecules, 162 (2020): 845-852 [CrossRef] [PubMed] [Google Scholar]
- M. Abbaszadeh, P. Hejazi, Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications, Food Chemistry, 290 (2019): 47-55 [CrossRef] [PubMed] [Google Scholar]
- O.C. Amadi, I.P. Awodiran, A.N. Moneke, T.N. Nwagu, J.E. Egong, G.C. Chukwu, Concurrent production of cellulase, xylanase, pectinase and immobilization by combined Cross-linked enzyme aggregate strategyadvancing tri-enzyme biocatalysis, Bioresource Technology Reports, 18 (2022): 101019 [CrossRef] [Google Scholar]
- Y. Wang, C. Feng, R. Guo, Y. Ma, Y. Yuan, Y. Liu, Cellulase immobilized by sodium alginatepolyethylene glycol-chitosan for hydrolysis enhancement of microcrystalline cellulose, Process Biochemistry, 107 (2021): 38-47 [CrossRef] [Google Scholar]
- S. Raza, X. Yong, J. Deng, Immobilizing cellulase on multi-layered magnetic hollow particles: Preparation, bio-catalysis and adsorption performances, Microporous and Mesoporous Materials, 285 (2019): 112-119 [CrossRef] [Google Scholar]
- B. Qi, J. Luo, Y. Wan, Immobilization of cellulase on a core-shell structured metal-organic framework composites: Better inhibitors tolerance and easier recycling, Bioresource Technology, 268 (2018): 577-582 [CrossRef] [PubMed] [Google Scholar]
- E.C. Lau, H.H. Yiu, Chapter 11 Enzyme immobilization on magnetic nanoparticle supports for enhanced separation and recycling of catalysts, In Nanomaterials for Biocatalysis, (2022): 301-321 [CrossRef] [Google Scholar]
- Q. Li, Y. Chen, S. Bai, X. Shao, L. Jiang, Q. Li, Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: A sustainable biocatalyst for biodiesel synthesis, Colloids and Surfaces B: Biointerfaces, 188 (2020): 110812 [CrossRef] [Google Scholar]
- D. Zhang, H.E. Hegab, Y. Lvov, L. Dale Snow, J. Palmer, Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer, SpringerPlus, 5, 1 (2016): 1-20 [CrossRef] [PubMed] [Google Scholar]
- F.R. Paz-Cedeno, J.M. Carceller, S. Iborra, R.K. Donato, A.P. Godoy, A.V. de Paula, R. Monti, A. Corma, F. Masarin, Magnetic graphene oxide as a platform for the immobilization of cellulases and xylanases: Ultrastructural characterization and assessment of lignocellulosic biomass hydrolysis, Renewable Energy, 164 (2021): 491-501 [CrossRef] [Google Scholar]
- E. Poorakbar, A. Shafiee, A.A. Saboury, B.L. Rad, K. Khoshnevisan, L. Ma’mani, H. Derakhshankhah, M.R. Ganjali, M. Hosseini, Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability, Process Biochemistry, 71 (2018): 92-100 [CrossRef] [Google Scholar]
- M.P. Desai, K.D. Pawar, Immobilization of cellulase on iron tolerant Pseudomonas stutzeri biosynthesized photocatalytically active magnetic nanoparticles for increased thermal stability, Materials Science and Engineering: C, 106 (2020): 110169 [CrossRef] [Google Scholar]
- M. Zhou, L. Yan, H. Chen, X. Ju, Z. Zhou, L. Li, Development of functionalized metal-organic frameworks immobilized cellulase with enhanced tolerance of aqueous-ionic liquid media for in situ saccharification of bagasse, Fuel, 304 (2021): 121484 [CrossRef] [Google Scholar]
- Z. Zhou, X. Ju, M. Zhou, X. Xu, J. Fu, L. Li, An enhanced ionic liquid-tolerant immobilized cellulase system via hydrogel microsphere for improving in situ saccharification of biomass, Bioresource Technology, 294 (2019): 122146 [CrossRef] [PubMed] [Google Scholar]
- F. Miao, X. Lu, B. Tao, R. Li, P.K. Chu, Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing, Microelectronic Engineering, 149 (2016): 153-158 [CrossRef] [Google Scholar]
- J. Isanapong, P. Pornwongthong, Immobilized laccase on zinc oxide nanoarray for catalytic degradation of tertiary butyl alcohol, Journal of hazardous materials, 411 (2021): 125104 [CrossRef] [PubMed] [Google Scholar]
- V. Hooda, A novel polyurethane/nano ZnO matrix for immobilization of chitinolytic enzymes and optical sensing of chitin, International Journal of Biological Macromolecules, 106 (2018): 1173-1183 [CrossRef] [PubMed] [Google Scholar]
- R. Batool, S.A. Kazmi, S. Khurshid, M. Saeed, S. Ali, A. Adnan, F. Altaf, A. Hameed, F. Batool, N. Fatima, Postharvest shelf life enhancement of peach fruit treated with glucose oxidase immobilized on ZnO nanoparticles, Food Chemistry, 366 (2022): 130591 [CrossRef] [PubMed] [Google Scholar]
- S. Adesoye, K. Dellinger, ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based bio-sensing: A review, Sensing and Bio-Sensing Research, 37 (2022): 100499 [CrossRef] [Google Scholar]
- N. Antony, S. Balachandran, P.V. Mohanan, Immobilization of diastase alpha-amylase on nano zinc oxide, Food chemistry, 211 (2016): 624-630 [CrossRef] [PubMed] [Google Scholar]
- K.N. Rajnish, M.S. Samuel, S. Datta, N. Chandrasekar, R. Balaji, S. Jose, E. Selvarajan, Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review, International Journal of Biological Macromolecules, 182 (2021): 1793-1802 [CrossRef] [PubMed] [Google Scholar]
- K. Khoshnevisan, F. Vakhshiteh, M. Barkhi, H. Baharifar, E. Poor-Akbar, N. Zari, H. Stamatis, A.K. Bordbar, Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances, Molecular Catalysis, 442 (2017): 66-73 [CrossRef] [Google Scholar]
- O. Classics Lowry, N. Rosebrough, A. Farr, R. Randall, Protein measurement with the folin phenol reagent, Journal of Biological Chemistry, 193, 1 (1951): 265-75 [CrossRef] [Google Scholar]
- K. Saha, P. Verma, J. Sikder, S. Chakraborty, S. Curcio, Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse, Renewable Energy, 133 (2019): 66-76 [CrossRef] [Google Scholar]
- D. Tanyolaç, B.I. Yürüksoy, A.R. Özdural, Immobilization of a thermostable α-amylase, Termamyl®, onto nitrocellulose membrane by Cibacron Blue F3GA dye binding, Biochemical Engineering Journal, 2, 3 (1998): 179-186 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.