Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202343001020 | |
Published online | 06 October 2023 |
- Tianqi Zhu, Wei Luo and Feng Yu, Int. J. Environ. Res. Public Health, 11, 4152 (2020) [Google Scholar]
- Jinjin Zhou, Gunangsheng Wang, Junbiao Liu, Duanpo Wu, Weifeng Xu, Zimeng Wang, Jing Ye, Ming Xia, Ying Hu and Yuanyuan Tian, IEEE Acce. 8, 57283 (2020) [CrossRef] [Google Scholar]
- B. L. Radhakrishnan, K. Ezra, I. J. Jebadurai, Intl. J. e-Collabor. 19, 3 (2023) [CrossRef] [Google Scholar]
- Q. Cai, Z. Gao, J. An, S. Gao and C. Grebogi, IEEE Trans. Circ. Syst. 68, (2021) [Google Scholar]
- S. Mousavi, F. Afghah, U. R. Acharya, PLoS One, 14, 5 (2019) [Google Scholar]
- O. Yildirim, U. B. Baloglu, U. R. Acharya, Int. J. Envi. Res. Publ. Heal 16, 4 (2019) [Google Scholar]
- V. Rohini, K. Sathish, W. L. Woo, E. S. L. Ho, Arxiv, 2204, 13584 (2022) [Google Scholar]
- T. Schlüter, S. Conrad, An Approach for Automatic Sleep Stage Scoring and Apnea-Hypopnea Detection, in the Proceedings of 2010 IEEE International Conference on Data Mining, Sydney, NSW, Australia, (2010) [Google Scholar]
- Aboalayon, A. I. Khald, M. Faezipour, W. S. Almuhammadi, S. Moslehpour, Entropy, 18, 9 (2016) [Google Scholar]
- Q. Zhong, H. Lei, Q. Chen, G. Zhou, J. Sens. 2021, 8222721 (2021) [CrossRef] [Google Scholar]
- P. Fonseca, X. Long, M. Radha, R. Haakma, R. M Aarts, J. Rolink, Physio, Meas. 36, 10 (2015) [Google Scholar]
- C. Timplalexis, K. Diamantaras, I. Chouvarda, Classification of Sleep Stages for Healthy Subjects and Patients with Minor Sleep Disorders, in the Proceedings of the IEEE 19th International Conference on Bioinformatics and Bioengineering, (2019) [Google Scholar]
- T. R. Sri, A. J. Madala, S. L. Duddukuru, R. Reddipalli and P. K. Polasi, A Systemati c Review on Deep Learning Models for Sleep Stage Classification, in the Proceeding of the 6th International Conference on Trends in Electronics and Informatics, Tirunelveli, India, (2022) [Google Scholar]
- A. M. Tăutan, A. C. Rossi, R. de Francisco and B. Ionescu, Automatic Sleep Stage Detection: A Study on the Influence of Various PSG Input Signals, in the Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, (2020) [Google Scholar]
- Md M. Rahman, Mh. I. H. Bhuiyan, A. R. Hassan, Compt. Biol. Medi. 102, (2018) [Google Scholar]
- What is the Sleep cycle? Stages of Sleep, https://www.sleepfoundation.org/wp-content/uploads/2021/12/SF-23-022_SleepCycle_Pie_Desktop-1024x717.png [Google Scholar]
- S. Bethu, M. Santoshi Kumari, C. Sravani, S. G. Bhargavi Latha, M. Suresh, Human Activity Identification using Artificial Intelligence, Research Advances in Intelligent Computing, 1st Edition, CRC Press (2023) [Google Scholar]
- R. Boorugu, G. Ramesh, A Survey on NLP based Text Summarization for Summarizing Product Reviews, in Proceedings of the 2nd International Conference on Inventive Research in Computing Applications (ICIRCA2020), 9183355, (2020) [Google Scholar]
- M. N. Mohammad, Ch. U. Kumari, A. S. D. Murthy, B. O. L. Jagan, K. Saikumar, Mater. Today Proc 45, 7 (2021) [Google Scholar]
- R. P. Ram Kumar, S. Polepaka, Performance Comparison of Random Forest Classifier and Convolution Neural Network in Predicting Heart Diseases, in Proceedings of the Third International Conference on Computational Intelligence and Informatics, (eds) K. Raju, A. Govardhan, B. Rani, R. Sridevi, M. Murty, Advances in Intelligent Systems and Computing, 1090. Springer, Singapore (2020) [Google Scholar]
- M. Kumar, S. Gupta, K. Kumar, M. Sachdeva, Digi. Gov. Res. Pract 1, 4 (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.