Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202343001021 | |
Published online | 06 October 2023 |
- Comprehensive Guide to Text Summarization using Deep Learning in Python, https:// www.analyticsvidhya.com/blog/2019/06/comprehensive-guide-text-summarizat ion-using-deep-learning-python/ [Google Scholar]
- Y. You, W. Jia, T. Liu, W. Yang, Improving Abstractive Document Summarization with Salient Information Modeling, in Proceedings of the 57thAnnual Meeting of the Association for Computational Linguistics, Florence, Italy, Association for Computational Linguistics (2019) [Google Scholar]
- N. Muneera, P. Sriramya, An Enhanced Optimized Abstractive Text Summarization Traditional Approach Employing Multi-layered Attentional Stacked LSTM with the Attention RNN, R.J. Kannan, S.M. Thampi, S.H. Wang, (eds) Comp. Visi. Mach. Intell. Parad. SDGs. Lect. Not. Elect. Engg. 967, Springer, Singapore (2023) [Google Scholar]
- S. Song, H. Huang, T. Ruan, Multi. Tools Appl 78, (2019) [Google Scholar]
- M. Koupaee, W. Y. Wang, Arxiv, CS-CL, 10, 09305 (2018) [Google Scholar]
- T. Cai, M. Shen, H. Peng, L. Jiang, Q. Dai, Improving Transformer with Sequential Context Representations for Abstractive Text Summarization, in J. Tang, MY. Kan, D. Zhao, S. Li, H. Zan, (eds) Nat. Lang. Proces. Chine. Comput. (NLPCC 2019), Springer, Lect. Note. Comp. Sci 11838 (2019) [Google Scholar]
- Y. Zhang, D. Li, Y. Wang, Y. Fang, W. Xiao, MDPI, Appl. Sci 9, 8 (2019) [Google Scholar]
- Y. Liu, P. Liu, Sim, CLS: A Simple Framework for Contrastive Learning of Abstractive Summarization, in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2 (2021) [Google Scholar]
- P. Kouriss, G. Alexandridiss, A. Stafylopatiss, Abstractive Text Summarization Based on Deep Learning and Semantic Content Generalization,in Proceedings of the 57thAnnual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics (2019) [Google Scholar]
- N. I. Nikolov, R. H. R. Hahnloser, Arxiv, CS-CL, 12951, 7 (2019) [Google Scholar]
- Recurrent Neural Network Tutorial: Types, Examples, LSTM and More, https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn [Google Scholar]
- A. K. M. Masum, S. Abujar, M. A. I. Talukder, A. K. M. S. Azad Rabby, S. A. Hossain, Abstractive method of text summarization with sequence to sequence RNNs, in Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India (2019) [Google Scholar]
- S. Yeasmin, P. Tumpa, A. Nitu, Uddin, MdPalash, E. Ali, M. Ibn. Afjal, Amer. J. Engg. Res. 6, 8 (2017) [Google Scholar]
- P. Batra, S. Chaudhary, K. Bhatt, S. Varshney, S. Verma, A Review: Abstractive Text Summarization Techniques using NLP, in Proceedings of the 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), Dehradun, India (2020) [Google Scholar]
- Z. Liang, J. Du, C. Li, Neurocomputing, 410, 6 (2020) [Google Scholar]
- R. Boorugu, G. Ramesh, A Survey on NLP based Text Summarization for Summarizing Product Reviews, in Proceedings of the 2nd International Conference on Inventive Research in Computing Applications (ICIRCA2020), 9183355, (2020) [Google Scholar]
- R. P. Ram Kumar, P. Sanjeeva, S. F. Lazarus, D. V. Krishna, Intl. J. Inno. Tech. Explor. Engg 8, 11S2 (2019) [Google Scholar]
- M. N. Mohammad, Ch. U. Kumari, A. S. D. Murthy, B. O. L. Jagan, K. Saikumar, Mater. Today Proc 45 (2021) [Google Scholar]
- M. Thejaswee, V. Srilakshmi, K. Anuradha, G. Karuna, Performance Analysis of Machine Learning Algorithms for Text Classification, in Proceedings of the Advanced Informatics for Computing Research (ICAICR 2020), A. K. Luhach, D. S. Jat, K. H. Bin Ghazali, Gao, P. Lingras, (eds), Comm. Comp. Inform. Sci. Springer, Singapore 1393 (2021) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.