Open Access
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01071
Number of page(s) 8
Published online 06 October 2023
  1. Vinod BHarat, Navneet Malik, Jimmy Singla and Sudhanshu P Tiwari, Vol. 8, 1228–1233, International Journal of Advanced Trends in Computer Science and Engineering,(2019). [Google Scholar]
  2. Sabut S, Subudhi A, Dash M: “Automated segmentation and classification of brain stroke using expectation maximization and random forest classifier“,Biocybernetics Biomedical Engineering (2019), 10.1016/j.bbe.2019.04.004 is the doi. [Google Scholar]
  3. Sadoon, Toga A, Mohammed H. Ali: “Deep learning model for glioma, meningioma and pituitary classification”, [Google Scholar]
  4. Brain Tumor Classification Using Deep Learning Technique - Advanced Trends in Computer Science and Engineering Available Online (2019), [Google Scholar]
  5. Chandra, Saroj Kumar, and Manish Kumar Bajpai. Effective algorithm for benign brain tumor detection using fractional calculus. TENCON 2018-2018 IEEE Region 10 Conference. IEEE, (2018). DOI: 10.1109/TENCON.2018.8650163. [Google Scholar]
  6. Seetha, J., and S. S. Raja. Biomedical & Pharmacology Journal, 11, 1457-1461, (2018). DOI: 10.1007/978-981-10-9035-6_33. [CrossRef] [Google Scholar]
  7. Khawaldeh, Saed, et al. Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Applied Sciences, 8,2017. DOI: 10.3390/app8010027. [CrossRef] [Google Scholar]
  8. ResNet-50 vs VGG-19 vs training from scratch, Global Transitions Proceedings,Volume 2, Issue 2, November (2021), 375-381. [CrossRef] [Google Scholar]
  9. Brain Tumour Diagnosis and Classification via Pre-Trained Convolutional Neural Networks, arXiv:2208.00768,27 Jul(2022). [Google Scholar]
  10. Alqudah AM. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical & biological engineering & computing, (2019). DOI: 10.1007/s11517-019-02066-y. [Google Scholar]
  11. Rajpurkar, P. et al. Deep learning for chest radiograph diagnosis: PLoS Med. 15, e1002686 (2018). [Google Scholar]
  12. Vinod BHarat, Navneet Malik, Jimmy Singla and Sudhanshu P Tiwari: 2019. Vol. 8, 1228–1233, International Journal of Advanced Trends in Computer Science and Engineering, [Google Scholar]
  13. ResNet-50 based deep neural network using transfer learning for brain tumour classification, AIP Conference Proceedings 2463, 020014(2022), [Google Scholar]
  14. Ge, C. et al. Deep learning and multi-sensor fusion for glioma classification using multistream 2d convolutional networks. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 5894–5897 (2018). [Google Scholar]
  15. An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification, Computers, Materials & Continua (2021),DOI:10.32604/cmc.2021.018606. [Google Scholar]
  16. Çinar, A.; Yıldırım, M. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Med. Hypotheses (2020), 139, 109684. [CrossRef] [Google Scholar]
  17. An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning, Appl. Sci. (2022), 12(11), 5645, [CrossRef] [Google Scholar]
  18. Deepak, S.; Ameer, P.M. Automated Categorization of Brain Tumor from MRI Using CNN features and SVM. J. Ambient Intell. Humaniz. Comput. (2020), 12, 8357–8369. [Google Scholar]
  19. Chandrika Lingala, and Karanam Madhavi, “A Hybrid Framework for Heart Disease Prediction Using Machine Learning Algorithms “, E3S Web of Conferences 309, 01043 (2021). [CrossRef] [EDP Sciences] [Google Scholar]
  20. V. Tejaswini Priyanka, Y. Reshma Reddy, D. Vajja, G. Ramesh and S. Gomathy “A Novel Emotion based Music Recommendation System using CNN. “ 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 592-596, (2023). [Google Scholar]
  21. D. Dusa and M. R. Gundavarapu, “Smart Framework for Black Fungus Detection using VGG 19 Deep Learning Approach”, 8th International Conference on Advanced Computing and Communication Systems (ICACCS),1023-1028, Coimbatore, India, (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.