Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01076
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202343001076
Published online 06 October 2023
  1. S. Sivachandiran, K.J. Mohan, and Nazer G.M. Measurement: Sensors, 24 (2022), 100422. [CrossRef] [Google Scholar]
  2. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal Loss for Dense Object Detection, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988. [Google Scholar]
  3. J. Redmon and A. Farhadi, YOLOv3: An Incremental Improvement, arXiv preprint arXiv:1804.02767, (2018). [Google Scholar]
  4. K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask R-CNN, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2980-2988, (2017). [Google Scholar]
  5. K. Duan, S. Liu, D. Du, Q. Zhao, and X. Zhang, “CenterNet: Keypoint Triplets for Object Detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6569-6578, (2019). [Google Scholar]
  6. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, DETR: End-to-End Object Detection with Transformers, in Proceedings of the European Conference on Computer Vision (ECCV), 213-229, (2020) [Google Scholar]
  7. M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Efficient Object Detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10781-10790, (2020) [Google Scholar]
  8. M. Tan, R. Pang, and Q. V. Le, EfficientDet-D8: Achieving Top Performance in Object Detection with 5x Fewer FLOPS, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8130-8139, (2021). [Google Scholar]
  9. M. Tan, R. Pang, Q. V. Le, et al., EfficientDet-D7: Ultra-Large- Scale Object Detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10609-10618, (2021). [Google Scholar]
  10. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ArcFace: Additive Angular Margin Loss for Deep Face Recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4690-4699, (2019). [Google Scholar]
  11. D. Karpov, A. Konushin, and I. Shumeiko, DeepFaceLab: A Simple and Powerful Face Swapping Framework, in Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 415-420, (2019). [Google Scholar]
  12. M. Shao, Y. Wang, and S. Shan, GAN-based Face Recognition in the Wild, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 13370-13379, (2020). [Google Scholar]
  13. F. Schroff, D. Kalenichenko, and J. Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815-823, (2015). [Google Scholar]
  14. W. Liu, W. Liu, and J. Ye, Large Margin Softmax Loss for Convolutional Neural Networks, in Proceedings of the International Conference on Machine Learning (ICML), 507-516, (2016). [Google Scholar]
  15. D. Yi, Z. Lei, S. Liao, and S. Z. Li, Learning Discriminative Features with Multiple Granularities for Face Recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1685-1692, (2014). [Google Scholar]
  16. Gundavarapu, M.R., Ineni, S.K., Sathvika, K., Keshava, G.S., Charan, U.R.,Journal of Physics: Conference Series, 2325 (2022). [Google Scholar]
  17. G. M. Rao, C. Sowmya, D. Mamatha, P. A. Sujasri, S. Anitha and R. Alivela, Sign Language Recognition using LSTM and Media Pipe, 7th International Conference on Intelligent Computing and Control Systems (ICICCS),1086-1091,Madurai, India, (2023). [Google Scholar]
  18. Chandra Sekhar Reddy, P., Vara Prasad Rao, P., Kiran Kumar Reddy, P., Sridhar, M., Motif Shape Primitives on Fibonacci Weighted Neighborhood Pattern for Age Classification, In Soft Computing and Signal Processing. Advances in Intelligent Systems and Computing, vol 900. Springer, Singapore, (2019). [CrossRef] [Google Scholar]
  19. Chandra Sekhar Reddy P, Sakthidharan G, Kanimozhi Suguna S, Mannar Mannan J, Varaprasada Rao P, International Journal of Engineering and Advanced Technology. 8, (2019). [Google Scholar]
  20. P.Chandra Sekhar Reddy, B. Eswara Reddy and V. Vijaya Kumar, International Journal of Image, Graphics and Signal Processing. 4, (2012). [Google Scholar]
  21. Chandrika Lingala, and Karanam Madhavi et.al, “A Survey on Cardivascular Prediction using Variant Machine learning Solutions. E3S Web of Conferences 309, 01042, ICMED 2021, (2021). [CrossRef] [EDP Sciences] [Google Scholar]
  22. Chandrika Lingala, and Karanam Madhavi, A Hybrid Framework for Heart Disease Prediction Using Machine Learning Algorithms”, E3S Web of Conferences 309, 01043, ICMED 2021, (2021). [CrossRef] [EDP Sciences] [Google Scholar]
  23. Kumar, S.K., Reddy, P.D.K., Ramesh, G., Maddumala, V.R. Traitement du Signal, 36 (3) 233-237, (2019). https://doi.org/10.18280/ts.360305. [CrossRef] [Google Scholar]
  24. Somasekar, J Ramesh, G, IJEMS, 29(6) [December 2022], NIScPR-CSIR, India, (2022). [Google Scholar]
  25. Gajula Ramesh, Anusha Anugu, Karanam Madhavi, P. Surekha, Automated Identification and Classification of Blur Images, Duplicate Images Using Open CV. In: Luhach A.K., Jat D.S., Bin Ghazali K.H., Gao XZ., Lingras P. (eds) Advanced Informatics for Computing Research. ICAICR 2020. Communications in Computer and Information Science, vol 1393. Springer, Singapore, (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.