Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01195 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/e3sconf/202343001195 | |
Published online | 06 October 2023 |
- Breast Cancer Facts & Figures 2021-2022. Atlanta: American Cancer Society, Inc. (2021). [Google Scholar]
- Breast Cancer report WHO, 2023. https://www.who.int/news-room/fact-sheets/detail/breast-cancer [Google Scholar]
- B. Stenkvist, E. Bengtsson, E. T. Jarkrans, B Nordin, S Westman-Naeser “Histopathological systems of breast cancer classification: reproducibility and clinical significance” J Clin Pathol 1983, Vol-36, 392-398, (1983). http://jcp.bmj.com/ [Google Scholar]
- Y. X. Ci, T. Y. Gao, J. Feng, And Zhen Quan Guo “Fourier Transform Infrared Spectroscopic Characterization of Human Breast Tissue: Implications for Breast Cancer Diagnosis” IEEE Transaction, Applied Spectroscopy Volume 53, Number 3, (1999). [Google Scholar]
- V. Ntziachristos and B. Chance “Probing physiology and molecular function using optical imaging: applications to breast cancer” BioMed Central Ltd. Print ISSN 1465-5411, Breast Cancer Research 2001, Vol-3 pp 41–46, (2001). [Google Scholar]
- S. G. Vari, G. Brugal, R.D. Naber, G. Muller “Interactive Histopathology Consultation Network” IEEE Transaction, pp: 197-202, (2000). [Google Scholar]
- S. G. Demos, R. Bold, R. D. White, and Rajendra Ramsamooj “Investigation of Near-Infrared Autofluorescence Imaging for the Detection of Breast Cancer” IEEE journal of selected topics in quantum electronics, vol. 11, (2005). [Google Scholar]
- S. Waheed, R. A. Moffitt, Q. Chaudryl, A. N. Young, and M.D. Wang “Computer Aided Histopathological Classification of Cancer Subtypes” IEEE conference pp:503-508, (2007). [Google Scholar]
- M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, S. Nasir, M. Rajpoot, and B. Yener “Histopathological Image Analysis: A Review” IEEE reviews in biomedical engineering, vol. 2, pp: 147-169, (2009). [CrossRef] [PubMed] [Google Scholar]
- H. Sung, P. S. Rosenberg et.al “Female Breast Cancer Incidence Among Asian and Western Populations: More Similar Than Expected” JNCI J Natl Cancer Inst, April-13, (2015), doi:10.1093/jnci/djv107. [Google Scholar]
- Y. A. Kofahi, W. Lassoued, W. Lee, and B. Roysam “Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images” IEEE Transactions on Biomedical Engineering, vol. 57, pp: 841-852, (2010). [CrossRef] [PubMed] [Google Scholar]
- P Pandit, R Patil et.al “Prevalence of Molecular Subtypes of Breast Cancer: A Single Institutional Experience of 2062 Patients” Eur J Breast Health; pp: 39-43, (2020). DOI: 10.5152/ejbh.2019.4997 [Google Scholar]
- J. W. Han, T. P. Breckon, D. A. Randell, G. Landini “The application of support vector machine classification to detect cell nuclei for automated microscopy” Journal on Machine Vision and Applications, Springer-05 Jan, (2010). DOI 10.1007/s00138-010-0275-y [Google Scholar]
- Y. Zhang, B. Zhang, F. Coenen, W. Lu “Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles” International Journal in Machine Vision and Applications, Springer- 17 September (2012), DOI:10.1007/s00138-012-0459-8. [Google Scholar]
- S. Kothari, J. H. Phan, A. N. Young and M. D. Wang “Histological image classification using biologically interpretable shape-based features” BMC Medical Imaging, pp:3-16, (2013), http://www.biomedcentral.com/1471-2342/13/9. [Google Scholar]
- S. Krishnamurthy, K. Mathews, S. McClure, M. Murray “Multi-Institutional Comparison of Whole Slide Digital Imaging and Optical Microscopy for Interpretation of Haematoxylin-Eosin–Stained Breast Tissue Sections” Arch Pathol Lab Med—vol 137, December (2013), doi: 10.5858/arpa.2012-0437-OA. [Google Scholar]
- E. Ozdemir and C. G. Demir “A Hybrid Classification Model for Digital Pathology Using Structural and Statistical Pattern Recognition” IEEE Transactions on Medical Imaging, February 2013, Vol. 32, No. 2, (2013). [Google Scholar]
- L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00444-8. [Google Scholar]
- V. Patel, V. Chaurasia, R. Mahadeva, and S. P. Patole, “GARL-Net: Graph Based Adaptive Regularized Learning Deep Network for Breast Cancer Classification,” IEEE Access, vol. 11, no. January, pp. 9095–9112, (2023), doi: 10.1109/ACCESS.2023.3239671. [CrossRef] [Google Scholar]
- H. Irshad, A. Veillard, L. Roux, and D. Racoceanu “Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential” IEEE Reviews in Biomedical Engineering, vol. 7, (2014). [Google Scholar]
- A. K. Itawadiya, R. Mahle, V. Patel, and D. Kumar, “Design a DSP operations using vedic mathematics,” Int. Conf. Commun. Signal Process. ICCSP 2013 - Proc., pp. 897–902, (2013), doi: 10.1109/iccsp.2013.6577186. [Google Scholar]
- R. Mahadeva, M. Rathore, V. Chaurasia, M. Shandilya, S. P. Patole, and V. Patel, “Edge Detection and Color Mapping Based Diabetic Retinopathy from Fundus Images,” 1st IEEE Int. Conf. Innov. High Speed Commun. Signal Process. IHCSP 2023, pp. 483–487, (2023), doi: 10.1109/IHCSP56702.2023.10127198. [Google Scholar]
- R. Mahadeva, S. P. Patole, V. Patel, V. Chaurasia, A. Sharma, and R. Sharma, “Deep Transfer Learning with Multi-Level Features Extraction Approach for Breast Cancer Classification,” 1st IEEE Int. Conf. Innov. High Speed Commun. Signal Process. IHCSP 2023, pp. 471–474, (2023), 10.1109/IHCSP56702.2023.10127180. [Google Scholar]
- S. Bhardwaj, V. Chaurasia, E. Ahmad Siddiqui, V. Patel, A. Sharma, and M. Tiwari, “Feature Extraction Based Domain Kickout Method for Fractal Image Compression,” 1st IEEE Int. Conf. Innov. High Speed Commun. Signal Process. IHCSP 2023, no. i, pp. 514–518, (2023), doi: 10.1109/IHCSP56702.2023.10127206. [Google Scholar]
- L. Sun, J. Zhang, W. Ding, and J. Xu, “Feature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted K-nearest neighbors,” Inf. Sci. (Ny)., vol. 593, pp. 591–613, (2022), doi: 10.1016/j.ins.2022.02.004. [CrossRef] [Google Scholar]
- S. Pouyanfar et al., “A survey on deep learning: Algorithms, techniques, and applications,” ACM Comput. Surv., vol. 51, no. 5, (2018), doi: 10.1145/3234150. [Google Scholar]
- S. Panigrahi, A. Nanda, and T. Swarnkar, “A Survey on Transfer Learning,” Smart Innov. Syst. Technol., vol. 194, no. 10, pp. 781–789, (2021), doi: 10.1007/978-981-15-5971-6_83. [CrossRef] [Google Scholar]
- R. Mahadeva, M. Kumar, V. Gupta, G. Manik, and S. P. Patole, “Modified Whale Optimization Algorithm based ANN: a novel predictive model for RO desalination plant,” Sci. Rep., vol. 13, no. 1, pp. 1–14, (2023), doi: 10.1038/s41598-023-30099-9. [CrossRef] [Google Scholar]
- R. Mahadeva, M. Kumar, S. P. Patole, and G. Manik, “Desalination Plant Performance Prediction Model Using Grey Wolf Optimizer Based ANN Approach,” IEEE Access, vol. 10, pp. 34550–34561, 2022, doi: 10.1109/ACCESS.2022.3162932. [CrossRef] [Google Scholar]
- A. Goel, R. Mahadeva, and G. Manik, “Analysis and Optimization of Parabolic Trough Solar Collector to Improve Its Optical Performance,” J. Sol. Energy Eng. Trans. ASME, vol. 145, no. 3, pp. 1–12, (2023), doi: 10.1115/1.4055995. [CrossRef] [Google Scholar]
- R. Mahadeva, M. Kumar, S. P. Patole, and G. Manik, “Employing artificial neural network for accurate modeling, simulation and performance analysis of an RO-based desalination process,” Sustain. Comput. Informatics Syst., vol. 35, no. April, p. 100735, (2022), doi: 10.1016/j.suscom.2022.100735. [CrossRef] [Google Scholar]
- R. Mahadeva, M. Kumar, G. Manik, and S. P. Patole, “Modeling, simulation, and optimization of the membrane performance of seawater reverse osmosis desalination plant using neural network and fuzzy based soft computing techniques,” Desalin. Water Treat., vol. 229, pp. 17–30, (2021), doi: 10.5004/dwt.2021.27386. [CrossRef] [Google Scholar]
- M. Veta, J. P. W. Pluim, P. J. van Diest, and Max A. Viergever “Breast Cancer Histopathology Image Analysis: A Review” IEEE Transactions on Biomedical Engineering, Vol. 61, No. 5, (2014). [Google Scholar]
- F. A. Spanhol, L. S. Oliveira, C. Petitjean, Laurent Heutte “A Dataset for Breast Cancer Histopathological Image Classification” DOI 10.1109/TBME.2015.2496264, IEEE Transactions on Biomedical Engineering, (2015). [Google Scholar]
- M. Tiwari, V. Chaurasia, E. A. Siddiqui, V. Patel, A. Kumar, and M. Patankar, “Enhanced Image Compression Using Fractals and Principle Component Analysis,” 1st IEEE Int. Conf. Innov. High Speed Commun. Signal Process. IHCSP 2023, no. 2, pp. 502–507, (2023), doi: 10.1109/IHCSP56702.2023.10127168. [Google Scholar]
- R. Mahadeva, M. Kumar, S. P. Patole, and G. Manik, “PID Control Design Using AGPSO Technique and Its Application in TITO Reverse Osmosis Desalination Plant,” IEEE Access, vol. 10, no. November, pp. 125881–125892, (2022), doi: 10.1109/ACCESS.2022.3224127. [CrossRef] [Google Scholar]
- R. Mahadeva, M. Kumar, A. Goel, S. P. Patole, and G. Manik, “A Novel AGPSO3-based ANN Prediction Approach: Application to the RO Desalination Plant,” Arab. J. Sci. Eng., (2023), doi: 10.1007/s13369-023-07631-0. [Google Scholar]
- B. E. Bejnordi, M. Balkenhol, G. Litjens “Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images” IEEE Transactions on Medical Imaging, vol. 35, September (2016). [Google Scholar]
- K. Sirinukunwattana, S. E Ahmed Raza, Y.W. Tsang “Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images” IEEE Transactions on Medical Imaging, May 2016, Vol. 35, (2016). [Google Scholar]
- J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang “Stacked Sparse Autoencoder (SSAE) for Nuclei” IEEE Transactions on Medical Imaging, January 2016, vol. 35, (2016). [Google Scholar]
- B. E. Bejnordi, G. Litjens, N. Timofeeva, I. O. Holle “Stain Specific Standardization of Whole-Slide Histopathological Images” IEEE Transactions on Medical Imaging, February 2016, vol. 35, (2016). [Google Scholar]
- S. Reis, P. Gazinska etc.al “Automated Classification of Breast Cancer Stroma Maturity from Histological Images” IEEE transactions on biomedical engineering, October 2017, vol. 64, no. 10, (2017). [Google Scholar]
- S. Sheikh, B. Suthar, and M. Uddin, in 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI) (IEEE, 2017), pp. 1–6 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.