Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01209
Number of page(s) 23
DOI https://doi.org/10.1051/e3sconf/202343001209
Published online 06 October 2023
  1. Wade, M. J. (2020). Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes. Processes, 8(8), 888. https://doi.org/10.3390/pr8080888. [CrossRef] [Google Scholar]
  2. Moon, I., Yun, W. Y., & Sarkar, B. (2022). Effects of variable setup cost, reliability, and production costs under controlled carbon emissions in a reliable production system. European Journal of Industrial Engineering, 16(4), 371-397. [CrossRef] [Google Scholar]
  3. Parente, M., Figueira, G., Amorim, P., & Marques, A. (2020). Production scheduling in the context of Industry 4.0: review and trends. International Journal of Production Research, 58(17), 5401-5431. [CrossRef] [Google Scholar]
  4. Potrč, S., Čuček, L., Martin, M., & Kravanja, Z. (2021). Sustainable renewable energy supply networks optimization–The gradual transition to a renewable energy system within the European Union by 2050. Renewable and Sustainable Energy Reviews, 146, 111186. https://doi.org/10.1016/j.rser.2021.111186 [CrossRef] [Google Scholar]
  5. Edgar, T. F., & Pistikopoulos, E. N. (2018). Smart manufacturing and energy systems. Computers & Chemical Engineering, 114, 130-144. https://doi.org/10.1016/j.compchemeng.2017.10.027 [CrossRef] [Google Scholar]
  6. Andiappan, V. (2017). State-of-the-art review of mathematical optimisation approaches for synthesis of energy systems. Process Integration and Optimization for Sustainability, 1(3), 165-188. https://doi.org/10.1007/s41660-017-0013-2 [CrossRef] [Google Scholar]
  7. Maheshwari, Z., & Ramakumar, R. (2017). Smart integrated renewable energy systems (SIRES): A novel approach for sustainable development. Energies, 10(8), 1145. [CrossRef] [Google Scholar]
  8. Mortensen, A. W., Mathiesen, B. V., Hansen, A. B., Pedersen, S. L., Grandal, R. D., & Wenzel, H. (2020). The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system–A study on the Danish energy system. Applied Energy, 275, 115331. [CrossRef] [Google Scholar]
  9. Gómez Sánchez, M., Macia, Y. M., Fernández Gil, A., Castro, C., Nuñez González, S. M., & Pedrera Yanes, J. (2020). A mathematical model for the optimization of renewable energy systems. Mathematics, 9(1), 39. [CrossRef] [Google Scholar]
  10. Kanase-Patil, A. B., Kaldate, A. P., Lokhande, S. D., Panchal, H., Suresh, M., & Priya, V. (2020). A review of artificial intelligence-based optimization techniques for the sizing of integrated renewable energy systems in smart cities. Environmental technology reviews, 9(1), 111-136. [CrossRef] [Google Scholar]
  11. Ghosh, S., Dutta, S., & Chowdhury, R. (2020). Ameliorated hydrogen production through integrated dark-photo fermentation in a flat plate photobioreactor: Mathematical modelling and optimization of energy efficiency. Energy Conversion and Management, 226, 113549. [CrossRef] [Google Scholar]
  12. Siddaiah, R., & Saini, R. P. (2016). A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews, 58, 376-396. [CrossRef] [Google Scholar]
  13. Tovar-Facio, J., Martín, M., & Ponce-Ortega, J. M. (2021). Sustainable energy transition: modeling and optimization. Current Opinion in Chemical Engineering, 31, 100661. [CrossRef] [Google Scholar]
  14. Li, T., Liu, P., & Li, Z. (2020). A multi-period and multi-regional modeling and optimization approach to energy infrastructure planning at a transient stage: A case study of China. Computers & Chemical Engineering, 133, 106673. [CrossRef] [Google Scholar]
  15. Singh, S., Chauhan, P., Aftab, M. A., Ali, I., Hussain, S. S., & Ustun, T. S. (2020). Cost optimization of a stand-alone hybrid energy system with fuel cell and PV. Energies, 13(5), 1295. [CrossRef] [Google Scholar]
  16. Akram, F., Asghar, F., Majeed, M. A., Amjad, W., Manzoor, M. O., & Munir, A. (2020). Techno-economic optimization analysis of stand-alone renewable energy system for remote areas. Sustainable Energy Technologies and Assessments, 38, 100673. [CrossRef] [Google Scholar]
  17. Jahromi, R., Rezaei, M., Samadi, S. H., &Jahromi, H. (2021). Biomass gasification in a downdraft fixed-bed gasifier: Optimization of operating conditions. Chemical Engineering Science, 231, 116249. [CrossRef] [Google Scholar]
  18. Liu, Y., Yang, M., Ding, Y., Wang, M., & Qian, F. (2022). Process modelling, optimisation and analysis of heat recovery energy system for petrochemical industry. Journal of Cleaner Production, 135133. [Google Scholar]
  19. Yağlı, H., Koç, Y., & Kalay, H. (2021). Optimisation and exergy analysis of an organic Rankine cycle (ORC) used as a bottoming cycle in a cogeneration system producing steam and power. Sustainable Energy Technologies and Assessments, 44, 100985. https://doi.org/10.1016/j.seta.2020.100985. [CrossRef] [Google Scholar]
  20. Cao, L., Iris, K. M., Xiong, X., Tsang, D. C., Zhang, S., Clark, J. H., ... & Ok, Y. S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental research, 186, 109547. [CrossRef] [Google Scholar]
  21. Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755. [CrossRef] [PubMed] [Google Scholar]
  22. Kimura, H., Hashimoto-Sugimoto, M., Iba, K., Terashima, I., & Yamori, W. (2020). Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. Journal of experimental botany, 71(7), 2339-2350. [CrossRef] [PubMed] [Google Scholar]
  23. Okokpujie, I. P., Okokpujie, K., Omidiora, O., Oyewole, H. O., Ikumapayi, O. M., & Emuowhochere, T. O. (2022). Benchmarking and Multi-Criteria Decision Analysis Towards Developing a Sustainable Policy of Just in Time Production of Biogas in Nigeria. International Journal of Sustainable Development & Planning, 17(2). [Google Scholar]
  24. Sharma, H. B., Sarmah, A. K., & Dubey, B. (2020). Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and sustainable energy reviews, 123, 109761. [CrossRef] [Google Scholar]
  25. Mamvura, T. A., & Danha, G. (2020). Biomass torrefaction as an emerging technology to aid in energy production. Heliyon, 6(3), e03531. [CrossRef] [PubMed] [Google Scholar]
  26. Onokwai, A. O., Okokpujie, I. P., Ajisegiri, E. S., Oki, M., Adeoye, A. O., & Akinlabi, E. T. (2022). Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields. International Journal of Renewable Energy Development, 11(4). [Google Scholar]
  27. Onokwai, A. O., Ajisegiri, E. S. A., Okokpujie, I. P., Ibikunle, R. A., Oki, M., & Dirisu, J. O. (2022). Characterization of lignocellulose biomass based on proximate, ultimate, structural composition, and thermal analysis. Materials Today: Proceedings, 65, 2156-2162. [CrossRef] [Google Scholar]
  28. Onokwai, A. O., Okokpujie, I. P., Ajisegiri, E. S., Nnodim, C. T., Kayode, J. F., & Tartibu, L. K. (2023). Application of response surface methodology for the modelling and optimisation of bio-oil yield via intermediate pyrolysis process of sugarcane bagasse. Advances in Materials and Processing Technologies, 1-19. [Google Scholar]
  29. Lakshmikandan, M., Murugesan, A. G., Wang, S., Abomohra, A. E. F., Jovita, P. A., & Kiruthiga, S. (2020). Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. Journal of Cleaner Production, 247, 119398. [CrossRef] [Google Scholar]
  30. Nunes, L. J. R., Causer, T. P., & Ciolkosz, D. (2020). Biomass for energy: A review on supply chain management models. Renewable and Sustainable Energy Reviews, 120, 109658. [CrossRef] [Google Scholar]
  31. Sahoo, B., Routray, S. K., & Rout, P. K. (2020). A novel sensorless current shaping control approach for SVPWM inverter with voltage disturbance rejection in a dc grid–basegeneration system. Wind Energy, 23(4), 986-1005. [CrossRef] [Google Scholar]
  32. Abo-Khalil, A. G., Eltamaly, A. M., RP, P., Alghamdi, A. S., & Tlili, I. (2020). A sensorless wind speed and rotor position control of PMSG in wind power generation systems. Sustainability, 12(20), 8481. [CrossRef] [Google Scholar]
  33. Liu, L., Wang, Z., Wang, Y., Wang, J., Chang, R., He, G., ... & Li, S. (2020). Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China. Renewable and Sustainable Energy Reviews, 132, 110151. [CrossRef] [Google Scholar]
  34. Eldahab, Y. A., Saad, N. H., & Zekry, A. (2020). Assessing Wind Energy Conversion Systems Based on Newly Developed Wind Turbine Emulator. International Journal of Smart Grid-ijSmartGrid, 4(4) [Google Scholar]
  35. Abo-Khalil, A. G., Eltamaly, A. M.RP, P.,, Alghamdi, A. S., & Tlili, I. (2020). A sensorless wind speed and rotor position control of PMSG in wind power generation systems. Sustainability, 12(20), 8481 [CrossRef] [Google Scholar]
  36. Hu, H., Wang, L., & Lv, S. X. (2020). Forecasting energy consumption and wind power generation using deep echo state network. Renewable Energy, 154, 598-613.. [CrossRef] [Google Scholar]
  37. Shin, D. C., & Lee, D. M. (2020). Development of real-time implementation of a wind power generation system with modular multilevel converters for hardware in the loop simulation using Matlab/Simulink. Electronics, 9(4), 606. [CrossRef] [Google Scholar]
  38. Ishaq, H., & Dincer, I. (2020). Evaluation of a wind energy based system for co-generation of hydrogen and methanol production. International Journal of Hydrogen Energy, 45(32), 15869-15877. [CrossRef] [Google Scholar]
  39. Söder, L., Tómasson, E., Estanqueiro, A., Flynn, D., Hodge, B. M., Kiviluoma, J., ... & de Vries, L. (2020). Review of wind generation within adequacy calculations and capacity markets for different power systems. Renewable and Sustainable Energy Reviews, 119, 109540 [CrossRef] [Google Scholar]
  40. Dong, X., Liu, Z., Yang, P., & Chen, X. (2022). Harvesting Wind Energy Based on Triboelectric Nanogenerators. Nanoenergy Advances, 2(3), 245-268. [CrossRef] [Google Scholar]
  41. Shinde, N., Salema, Z., & Sakarwala, B. (2020). An Investigation of Non-Return Valves as Possible Sources of Pump Failure and A Comparative Analysis with Tesla Valves. International Journal of Engineering Research & Technology, 9, 71-80. [Google Scholar]
  42. Sui, J., Chen, Z., Wang, C., Wang, Y., Liu, J., & Li, W. (2020). Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization. Applied Energy, 276, 115409. [CrossRef] [Google Scholar]
  43. Wu, H., Liu, Q., Bai, Z., Xie, G., Zheng, J., & Su, B. (2020). Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy. Applied Thermal Engineering, 164, 114494.. [CrossRef] [Google Scholar]
  44. Yao, H., Zhang, P., Yang, C., Liao, Q., Hao, X., Huang, Y., ... & Qu, L. (2021). Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy & Environmental Science, 14(10), 5330-5338. [CrossRef] [Google Scholar]
  45. Sun, J., Wu, T., Wu, H., Li, W., Li, L., Liu, S., ... & Zhao, S. (2023). Aerogel-based solar-powered water production from atmosphere and ocean: A review. Materials Science and Engineering: R: Reports, 154, 100735. [CrossRef] [Google Scholar]
  46. Shi, L., Wang, X., Hu, Y., He, Y., & Yan, Y. (2020). Solar-thermal conversion and steam generation: a review. Applied Thermal Engineering, 179, 115691. [CrossRef] [Google Scholar]
  47. Wang, Z., Han, M., He, F., Peng, S., Darling, S. B., & Li, Y. (2020). Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 74, 104886. [CrossRef] [Google Scholar]
  48. Guan, Q. F., Han, Z. M., Ling, Z. C., Yang, H. B., & Yu, S. H. (2020). Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water. Nano letters, 20(8), 5699-5704 [CrossRef] [PubMed] [Google Scholar]
  49. Guo, Z., Wang, J., Wang, Y., Wang, J., Li, J., Mei, T., ... & Wang, X. (2022). Achieving steam and electrical power from solar energy by MoS2-based composites. Chemical Engineering Journal, 427, 131008. [CrossRef] [Google Scholar]
  50. Zhu, G., Peng, B., Chen, J., Jing, Q., & Wang, Z. L. (2015). Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 14, 126-138. [CrossRef] [Google Scholar]
  51. Barros, J. D., Silva, J. F. A., & Rocha, L. (2023). New backstepping controllers with enhanced stability for neutral point clamped converters interfacing photovoltaics and AC microgrids. International Journal of Electrical Power & Energy Systems, 153, 109332. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.