Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01213
Number of page(s) 18
DOI https://doi.org/10.1051/e3sconf/202343001213
Published online 06 October 2023
  1. O. Peter, A. Pradhan, and C. Mbohwa, “Industry 4.0 concepts within the sub–Saharan African SME manufacturing sector,” Procedia Comput. Sci., vol. 217, pp. 846–855, 2023. [CrossRef] [Google Scholar]
  2. L. Da Xu, E. L. Xu, and L. Li, “Industry 4.0: state of the art and future trends,” Int. J. Prod. Res., 2018. [Google Scholar]
  3. O. M. Ikumapayi, E. T. Akinlabi, P. Onu, and O. P. Abolusoro, “Rolling operation in metal forming: Process and principles – A brief study,” Mater. Today Proc., 2020. [Google Scholar]
  4. J. Ma, J. D. Harstvedt, D. Dunaway, L. Bian, and R. Jaradat, “An exploratory investigation of Additively Manufactured Product life cycle sustainability assessment,” J. Clean. Prod., 2018. [Google Scholar]
  5. G. Zuccaro et al., “Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall,” Autom. Constr., 2019. [Google Scholar]
  6. K. P. Rajurkar, H. Hadidi, J. Pariti, and G. C. Reddy, “Review of Sustainability Issues in Non-Traditional Machining Processes,” Procedia Manuf., 2017. [Google Scholar]
  7. O. M. Ikumapayi, E. T. Akinlabi, and P. Onu, “Emerging trend in forging operation,” in Lecture Notes in Mechanical Engineering, 2020. [Google Scholar]
  8. B. Ahuja, M. Karg, and M. Schmidt, “Additive manufacturing in production: challenges and opportunities,” in Laser 3D Manufacturing II, 2015. [Google Scholar]
  9. H. Zhou, J. Zhang, D. Yu, P. Feng, Z. Wu, and W. Cai, “Advances in rotary ultrasonic machining system for hard and brittle materials,” Advances in Mechanical Engineering. 2019. [Google Scholar]
  10. M. Asmael, B. Safaei, Q. Zeeshan, O. Zargar, and A. A. Nuhu, “Ultrasonic machining of carbon fiber–reinforced plastic composites: a review,” International Journal of Advanced Manufacturing Technology. 2021. [Google Scholar]
  11. J. Singh, C. Singh, and K. Singh, “Rotary ultrasonic machining of advance materials: A review,” Mater. Today Proc., 2023. [Google Scholar]
  12. P. K. S. C. Fernando, M. Zhang, and Z. Pei, “Rotary ultrasonic machining of rocks: An experimental investigation,” Adv. Mech. Eng., 2018. [Google Scholar]
  13. D. Cui et al., “Applications of Water Jet Cutting Technology in Agricultural Engineering: A Review,” Applied Sciences (Switzerland). 2022. [Google Scholar]
  14. G. M. Bazenov, G. T. Itybaeva, A. Z. Kasenov, and A. S. Yanyushkin, “Water-Jet Cutting of Glass Sheet,” Russ. Eng. Res., 2022. [Google Scholar]
  15. F. Bañon, A. Sambruno, L. González-Rovira, J. M. Vazquez-Martinez, and J. Salguero, “A review on the abrasive water-jet machining of metal–carbon fiber hybrid materials,” Metals. 2021. [Google Scholar]
  16. T. S. Nanjundeswaraswamy and A. Professor, “A Literature Review on Parameters Influencing Abrasive Jet Machining and Abrasive Water Jet Machining,” Varun R J. Eng. Res. Appl. www.ijera.com, 2019. [Google Scholar]
  17. Y. Natarajan, P. K. Murugesan, M. Mohan, and S. A. Liyakath Ali Khan, “Abrasive Water Jet Machining process: A state of art of review,” Journal of Manufacturing Processes. 2020. [Google Scholar]
  18. R. Melentiev and F. Fang, “Recent advances and challenges of abrasive jet machining,” CIRP Journal of Manufacturing Science and Technology. 2018. [Google Scholar]
  19. S. Madhu and M. Balasubramanian, “Challenges in abrasive jet machining of fiber-reinforced polymeric composites – a review,” World Journal of Engineering. 2021. [Google Scholar]
  20. A. Goyal, H. Singh, R. Goyal, R. Singh, and S. Singh, “Recent advancements in abrasive flow machining and abrasive materials: A review,” Mater. Today Proc., 2022. [Google Scholar]
  21. N. Dixit, V. Sharma, and P. Kumar, “Research trends in abrasive flow machining: A systematic review,” Journal of Manufacturing Processes. 2021. [Google Scholar]
  22. B. Azarhoushang, “Abrasive Machining Processes,” in Tribology and Fundamentals of Abrasive Machining Processes: Third Edition, 2021. [Google Scholar]
  23. J. Li, L. Yang, W. Liu, X. Zhang, and F. Sun, “Experimental research into technology of abrasive flow machining nonlinear tube runner,” Adv. Mech. Eng., 2014. [Google Scholar]
  24. A. D. Oza, A. Goyal, V. Buch, and M. Kumar, “Electrochemical discharge machining process: A review on process parameters and future scope,” Mater. Today Proc., 2022. [Google Scholar]
  25. P. Kaewsaard, H. Zhu, H. Qi, and V. Tangwarodomnukun, “Laser surface masking of stainless steel for electrochemical machining process,” Int. J. Adv. Manuf. Technol., 2021. [Google Scholar]
  26. H. Sohrabpoor, S. P. Khanghah, S. Shahraki, and R. Teimouri, “Multi-objective optimization of electrochemical machining process,” Int. J. Adv. Manuf. Technol., 2016. [Google Scholar]
  27. F. Klocke, S. Harst, L. Ehle, M. Zeis, and A. Klink, “Surface integrity in electrochemical machining processes: An analysis on material modifications occurring during electrochemical machining,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2018. [Google Scholar]
  28. S. P. Kadam and S. Mitra, “Electrochemical deburring - A comprehensive review,” in Materials Today: Proceedings, 2021. [Google Scholar]
  29. T. He, S. Huang, S. Fang, H. Deng, Q. Ding, and M. Zhang, “Study on the Electrochemical Deburring for the External Surface of the Microhole Caused by Mechanical Drilling Process,” Machines, 2022. [Google Scholar]
  30. S. J. Lee, C. P. Liu, T. J. Fan, and Y. H. Chen, “Deburring miniature components by electrochemical method,” Int. J. Electrochem. Sci., 2013. [Google Scholar]
  31. K. Fan, Z. Jin, and X. Zhu, “Investigation on electrochemical grinding (ECG) of pure iron material,” Int. J. Adv. Manuf. Technol., 2022. [Google Scholar]
  32. F. Jiao, X. Ma, W. Bie, Y. Niu, and S. Niu, “Research Status and Prospects of Electrochemical Grinding Technology,” Binggong Xuebao/Acta Armamentarii. 2022. [Google Scholar]
  33. H. M. Yehia, M. Hakim, and A. El-Assal, “Effect of the Al2O3 powder addition on the metal removal rate and the surface roughness of the electrochemical grinding machining,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2020. [Google Scholar]
  34. Y. C. Ge, Z. Zhu, D. Wang, Z. Ma, and D. Zhu, “Study on material removal mechanism of electrochemical deep grinding,” J. Mater. Process. Technol., 2019. [Google Scholar]
  35. J. Wang et al., “Research Status and Prospect of Laser Scribing Process and Equipment for Chemical Milling Parts in Aviation and Aerospace,” Micromachines. 2022. [Google Scholar]
  36. V. Deshmukh, R. Kadam, and S. S. Joshi, “Removal of alpha case on titanium alloy surfaces using chemical milling,” Mach. Sci. Technol., 2017. [Google Scholar]
  37. C. Owusu, S. Mensah, K. Ackah, and R. K. Amankwah, “Reducing preg-robbing in carbonaceous gold ores using passivative or blanking agents,” Miner. Eng., 2021. [Google Scholar]
  38. A. Koyuncuoğlu, D. Işık Akçakaya, Ö. Şardan Sukas, and H. Külah, “Wet etching of platinum (Pt) electrodes for piezoelectric transducers using a thick photoresist mask,” Micro Nano Eng., 2022. [Google Scholar]
  39. Z. Bassyouni and J. D. A. Ziki, “The capabilities of spark-assisted chemical engraving: A review,” J. Manuf. Mater. Process., 2020. [Google Scholar]
  40. G. Francis, B. W. Stuart, and H. E. Assender, “Selective ozone treatment of PDMS printing stamps for selective Ag metallization: A new approach to improving resolution in patterned flexible/stretchable electronics,” J. Colloid Interface Sci., 2020. [Google Scholar]
  41. L. A. Hof and R. Wuthrich, “Glass precision micro-cutting using spark assisted chemical engraving,” Adv. Ind. Manuf. Eng., 2021. [Google Scholar]
  42. J. D. Abou Ziki and R. Wüthrich, “Nature of drilling forces during spark assisted chemical engraving,” Manuf. Lett., 2015. [Google Scholar]
  43. M. Gostimirovic, P. Kovac, and M. Sekulic, “An inverse heat transfer problem for optimization of the thermal process in machining,” Sadhana - Acad. Proc. Eng. Sci., 2011. [Google Scholar]
  44. B. Bhattacharyya and B. Doloi, “Machining processes utilizing thermal energy,” in Modern Machining Technology, 2020. [Google Scholar]
  45. N. Ben Salah, F. Ghanem, and K. Ben Atig, “Numerical study of thermal aspects of electric discharge machining process,” Int. J. Mach. Tools Manuf., 2006. [Google Scholar]
  46. C. R. Martin, A. Untaroiu, K. Xu, and S. M. M. Raman, “A Study of the Efficacy of Flame Electrical Resistance for Standoff Measurements During the Oxyfuel Cutting Process,” J. Manuf. Sci. Eng., 2022. [Google Scholar]
  47. S. Deepthi and B. V. Dharmendra, “A review of current research on powder mixed electric discharge machining,” Int. J. Mech. Prod. Eng. Res. Dev., 2019. [Google Scholar]
  48. C. Prakash, H. K. Kansal, B. S. Pabla, S. Puri, and A. Aggarwal, “Electric discharge machining - A potential choice for surface modification of metallic implants for orthopedic applications: A review,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2016. [Google Scholar]
  49. N. Gurusamy, J. Natarajan, and P. K. Palaniappan, “Parameter optimization of the CNC wire-cut edm process for machining aluminium 6063-B4C metal matrix composites,” Trans. Famena, 2019. [Google Scholar]
  50. M. S. Amalnik, “Intelligent knowledge based system for material processing by electron beam machining (EBM) process,” Int. J. Adv. Eng. Technol., 2017. [Google Scholar]
  51. H. E. Joe, E. G. Kang, and M. B. G. Jun, “A review of state of the art of electron beam and ion beam machining,” J. Korean Soc. Precis. Eng., 2018. [Google Scholar]
  52. S. M. Scott and Z. Ali, “Fabrication methods for microfluidic devices: An overview,” Micromachines. 2021. [Google Scholar]
  53. J. Kechagias, M. Petousis, N. Vidakis, and N. Mastorakis, “Plasma Arc Cutting Dimensional Accuracy Optimization employing the Parameter Design approach,” ITM Web Conf., 2017. [Google Scholar]
  54. S. S. Pawar and K. H. Inamdar, “Factors affecting quality of plasma arc cutting process: A review,” Int. J. Adv. Technol. Eng. Sci., 2016. [Google Scholar]
  55. A. Klimpel et al., “Experimental investigations of the influence of laser beam and plasma arc cutting parameters on edge quality of high-strength low-alloy (HSLA) strips and plates,” Int. J. Adv. Manuf. Technol., 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.