Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01216 | |
Number of page(s) | 27 | |
DOI | https://doi.org/10.1051/e3sconf/202343001216 | |
Published online | 06 October 2023 |
- J. Y. Zheng, S. Q. Shi, and M. W. Fu, “Progressive microforming of pin-shaped plunger parts and the grain size effect on its forming quality,” Mater. Des., vol. 187, 2020, doi: 10.1016/j.matdes.2019.108386. [CrossRef] [Google Scholar]
- A. B. Arty, S. B. Ze’ev, and N. Frage, “Teaching metal- forming process using a laboratory micro-extrusion press,” in The minerals, Metals and Materials series, 2020, pp. 55–67, doi: http://doi.org/10.1007/978-3-030-36556-1. [Google Scholar]
- E. A. Owoeye, K. A. Ajenifuja, B. Babatope, G. A. Osinkolu, A. P. Popoopa, and O. Popoola, “Experimental investigation and numerical simulation of mechanical properties and thermal stability of tin alloy processed by equal channel angular extrusion.,” Eng. Res. Express., vol. 1, pp. 1–10, 2019. [Google Scholar]
- R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe, “Paradox of strength and ductility in metals processed by severe plastic deformation.,” J. Mater. Res., vol. 1, pp. 1–4, 2010. [Google Scholar]
- T. M. Azeez, L. O. Mudashiru, T. B. Asafa, A. A. Adeleke, and I. P.Pelumi, “Mechanical Properties of Al 6063 Processed with Equal Channel Angular Extrusion Under Varying Process Parameters,” . Int. J. Eng. Res. Africa, vol. 54, pp. 23–32, 2021. [CrossRef] [Google Scholar]
- J. Pirker and A. Dengel, “The Potential of 360° Virtual Reality Videos and Real VR for Education - A Literature Review,” IEEE Comput. Graph. Appl., vol. 41, no. 4, pp. 76–89, 2021, doi: 10.1109/MCG.2021.3067999. [CrossRef] [Google Scholar]
- J. K. Weertzman, “Hall-petch strengthening in nanocrystalline metals,” Mater. Sci. Eng., vol. 1, no. 2, pp. 161–167, 2012. [Google Scholar]
- B. Meng, W. H. Wang, Y. Y. Zhang, and M. Wan, “Size effect on plastic anisotropy in microscale deformation of metal foil,” J. Mater. Process. Technol., vol. 271, 2019, doi: 10.1016/j.jmatprotec.2019.03.023. [Google Scholar]
- A. Roschowski, “Processing metals by severe plastic deformation,” Solid State Phenom., no. 10, pp. 13–22, 2005. [CrossRef] [Google Scholar]
- T. M. Azeez, L. O. Mudashitu, T. B. Asafa, A. . Adeleke, A. A. Yusuf, and P. P. Ikubanni, “Mechanical Properties and Stress Distribution in Aluminium 6063 Extrudates Processed By Equal Channel Angular Extrusion Technique,” Australlian J. Mech. Eng., vol. 14, pp. 1–9, 2021. [Google Scholar]
- B. Nickolay, V. Sergey, and V. Alexey, “Material forming simulation environment based on QFORM software system,” Moskow, 2014. [Google Scholar]
- S. Kalpakjian, “Manufacturing process for engineering material,” 4th ed., Prentice Hall., 2013, pp. 1–13. [Google Scholar]
- F. A. Lontos, D. A. Soukatzidis, D. A. Demosthenous, and A. K. Baldoukas, “Effects of extrusion parameters and die geometry on the produced billet quality using finite element method,” in international Conference of Manufacturing Engineering, 2008, pp. 215–228. [Google Scholar]
- L. Zhenhua, C. Xianhua, and S. Qiangian, “Effects of heat treatment and ECAE process on transformation behaviour of TiNi shape memory alloy,” Mater. Lett., no. 59, pp. 705–709, 2004. [Google Scholar]
- S. Syahrullail, C. S. Azwadi, and W. D. Seah, “Plasticity of pure aluminum extruded with an RBD palm olein lubricants.,” J. Appl. Sci., vol. 9, pp. 3581–3586, 2009. [CrossRef] [Google Scholar]
- O. Kazeem, D. Oluwole, and G. J. Makinde, “Equal channel angular pressing technique for formation of ultra-fine grained structures.,” Int. J. Integr. Eng., vol. 8, pp. 1–7, 2012. [Google Scholar]
- X. Zhang, D. Natalia, and B. Joe, “Defects in Extrusions of Medium Strength 6000 Aluminium Alloys,” in 3rd Australasian Pacific Aluminium Extrusion Conference., 2015, pp. 12–19. [Google Scholar]
- N. A. Arvid, “Physical Metallurgy and Extrusion of 6063 Alloy,” in 5th International Aluminium Extrusion Technology Seminar, 2012, pp. 43–54. [Google Scholar]
- T. Chanda, J. Zhou, and J. Duszczyk, “A comparative study on iso-speed extrusion and isothermal extrusion of 6061 Al alloy using 3D FEM simulation.,” J. Mater. Process. Technol., vol. 114, no. 2, pp. 145-153., 2011. [Google Scholar]
- M. Bauser, G. Sauer, and K. Siegert, “Extrusions,” Aluminium-Verlag, vol. 6, no. 4, pp. 226–238, 2016. [Google Scholar]
- S. Storen, “Understanding Aluminium as a Material,” in The Norwegian Institute of Technology., 2014, pp. 32–38. [Google Scholar]
- O. Daramola, O. Ogunsanya, O. Akintayo, I. Oladele, B. Adewuyi, and E. Sadiku, “Mechanical properties of Al 6063 metal matrix composites reinforce with agro-waste silica particles,” Leanardo Electron. J. Pract. Technol., vol. 19, no. 33, pp. 89–104, 2019. [Google Scholar]
- P. Nick and J. Chris, “Control of Grain Structure in Al-Mg-Si Extrusions,” in Proceedings of the 3rd Australasian - Pacific Aluminium Extrusions Conference, 2012, pp. 16–22. [Google Scholar]
- J. Hu, T. Shimizu, T. Yoshino, T. Shiratori, and M. Yang, “Evolution of acoustic softening effect on ultrasonic-assisted micro/meso-compression behavior and microstructure,” Ultrasonics, vol. 107, 2020, doi: 10.1016/j.ultras.2020.106107. [Google Scholar]
- R. Brian, J. Tibbetts, and T. Y. Wen, “Extrusion Process Control: Modeling, Identification, and Opimization,” IEEE Trans. Control Syst. Technol., vol. 6, no. 2, pp. 134–145, 2018. [Google Scholar]
- T. Azeez, L. Mudashiru, and A. Ojetoye, “Assessment of Microstructure and Mechanical Properties of As-cast Magnesium Alloys Reinforced with Organically Extracted Zinc and Calcium.,” Adv. Manuf. Technol., vol. 6, no. 5, pp. 45–55, 2021. [Google Scholar]
- S. O. Adeosun, O. I. Sekunowo, and O. P. Gbenebor, “Effect of die entry angle on extrusion responses of aluminum 6063 alloy,” Int. J. Eng. Technol., vol. 4, no. 2, pp. 127–134, 2014. [Google Scholar]
- C. Bunget and G. Ngaile, “Influence of ultrasonic vibration on micro-extrusion,” Ultrasonic, vol. 51, pp. 606–616, 2011. [CrossRef] [Google Scholar]
- M. Taureza, X. Song, and S. Castagne, “On the influence of workpiece material on friction in micro-forming and lubricant effectiveness,” J. Mater. Process Technol., vol. 214, no. 4, pp. 998–1007, 2014. [CrossRef] [Google Scholar]
- I. Flitta and T. Sheppard, “Nature of friction in extrusion process and its effect on material flow,” Mater. Sci. Technol., vol. 19, no. 7, pp. 837–846, 2003. [CrossRef] [Google Scholar]
- S. Syahrullail, B. M. Zubil, C. S. N. Azwadi, and M. J. M. Ridzuan, “Experimental evaluation of palm oil as lubricant in cold forward extrusion process,” Int. J. Mech. Sci., vol. 53, pp. 549–555, 2011. [CrossRef] [Google Scholar]
- C. B. Seung, E. H. Yuri, S. K. Hyoung, T. J. Hyo, and J. H. Raph, “Calculation of deformation behavior and texture evolution during equal channel angular pressing,” Mater. Sci. Forum, vol. 408, pp. 697–702, 2002. [Google Scholar]
- S. Jumat, A. T. DinaAzleemaMohdNoor, M. Y. Nazrizawati, and M. Noraisha, “Fatty acid composition and physicochemical properties of malaysian castor bean seed oil.,” Saints Malaysiana., vol. 39, pp. 761–764, 2010. [Google Scholar]
- L. Lazzarotto, L. Dubar, A. Dubois, P. Ravassard, J. P. J. Bricout, and J. Oudin, “A selection methodology for lubricating oil in cold metal forming processes,” Wear, vol. 215, pp. 1–9, 1998. [CrossRef] [Google Scholar]
- U. Engel, “Tribology in Metal Forming,” Wear, vol. 260, pp. 265–273, 2006. [CrossRef] [Google Scholar]
- Z. Maoyu, M. Zhengzheng, T. Chunyan, and L. Ping, “The relationship between tensile strain and residual stress of high strength dual phase steel sheet,” in MATEC Web of Conferences, 2018, pp. 1–5. [Google Scholar]
- J. Piwnik and K. Mogielnicki, “Deformations in micro extrusion of metals,” Arch. Foundry Eng., vol. 16, no. 3, pp. 87–90, 2010. [Google Scholar]
- I. Flitta and T. Sheppard, “Effects of pressure and temperature variations on FEM prediction of deformation during extrusion,” Mater. Sci. Technol., vol. 21, no. 3, pp. 339–346, 2005. [CrossRef] [Google Scholar]
- B. Altan, B. Purcek, and I. Miskioglu, “Effect of extrusion process on lubricant,” J. Mater. Process Technol., vol. 168, pp. 137–142, 2007. [Google Scholar]
- Y. Saotome and A. Inoue, “Superplastic micro-forming of microstructure,” in Proceedings of the IEEE workshop on micro-electro-mechanical systems, 1994, pp. 343–348. [Google Scholar]
- M. Hirano, M. Yamasaki, K. Hagihara, K. Higashidam, and K. Kawamura, “Effect of extrusion parameters on mechanical properties of Mg97Zn1Y2 alloys at room and elevated temperatures,” Mater. Trans., vol. 51, no. 9, pp. 1640–1647, 2010. [CrossRef] [Google Scholar]
- B. Eichenhuller, U. Engel, and S. Geibdorfers, “Process parameter interaction in micro-forming,” Int. J. Mater. Forum, vol. 1, pp. 451–454, 2008. [CrossRef] [Google Scholar]
- W. L. Chan and M. W. Fu, “Meso-scaled progressive forming of bulk cylindrical and flanged parts using sheet metal,” Mater. Descr., vol. 43, pp. 249–257, 2013. [CrossRef] [Google Scholar]
- S. Geibdorfer, A. Rosochowski, L. Olejnik, U. Engel, and M. Richert, “Micro-extrusion of ultrafine grained copper,” Int. J. Mater. Forum., vol. 1, pp. 455–458, 2008. [CrossRef] [Google Scholar]
- S. W. Chung, H. Somekawa, T. Kinoshita, W. J. Kim, and K. Higashi, “The non-uniform behaviour during ECAE process by 3-D FVW simulation,” Sciptal Mater., vol. 50, pp. 1079–1083, 2004. [CrossRef] [Google Scholar]
- W. Zheng, G. Wang, G. Zhao, D. Wei, and Z. Jiang, “Modeling and analysis of dry friction in micro-forming of metals,” Tribol. Int., vol. 57, pp. 202–209, 2013. [CrossRef] [Google Scholar]
- K. Obiekea, S. Y. Aku, and Y. D. Aku, “Influence of pressure on the mechanical properties and grain refinement of die cast aluminum A1350 alloy,” Adv. Appl. Sci. Res., vol. 3, no. 6, pp. 3663–3673, 2012. [Google Scholar]
- X. Wang, M. Zhang, N. Tang, N. Li, L. Liu, and J. Li, “A forming load prediction model in BMG micro backward extrusion process considering size effect,” in Physics of Non Crystalline Solid, 2013, pp. 146–151. [Google Scholar]
- M. W. Fu and W. L. Chan, “Micro-scaled progressive forming of bulk micropart via directly using sheet metals,” Mater. Descr., vol. 49, pp. 774–783, 2013. [CrossRef] [Google Scholar]
- A. Rosochowski, W. Presz, L. Olejnik, and M. Richert, “Micro-extrusion of ultra-fine grained aluminium,” Int. J. Adv. Manuf. Technol., vol. 22, pp. 137–146, 2007. [CrossRef] [Google Scholar]
- T. Yalçinkaya, A. Demirci, I. Simonovski, and I. Özdemir, “Micromechanical Modelling of Size Effects in Microforming,” in Procedia Engineering, 2017, vol. 207, doi: 10.1016/j.proeng.2017.10.865. [Google Scholar]
- E. Ghassemali, A. E. W. Arfors, M. J. Tan, and S. C. Lim, “microstructure of micro-pins manufactured by a novel progressive micro-forming process,” Int. J. Mater. Forum, vol. 6, pp. 65–74, 2013. [CrossRef] [Google Scholar]
- F. Bonollo, J. Urban, B. Bonatto, and M. Botter, “Gravity and low pressure die casting of aluminium alloys: a technical and economical benchmark,” La Met. Ital, vol. 6, pp. 23–32, 2005. [Google Scholar]
- V. M. Segal, “Materials processing by simple shear,” Mater. Process Eng., vol. A, no. 197, pp. 157–164, 1995. [CrossRef] [Google Scholar]
- X. Lai, L. Peng, P. Hua, S. Lan, and J. Ni, “Material behavior modelling in micro/meso-scale forming process with considering size/scale effects,” Comput. Mater. Sci., vol. 43, pp. 1003–1009, 2008. [CrossRef] [Google Scholar]
- J. G. Liu, M. W. Fu, and W. L. Chan, “A constitutive model for modeling of the deformation behavior in micro-forming with a consideration of grain boundary strengthening,” Comput. Mater. Sci., vol. 55, pp. 85–94, 2012. [CrossRef] [Google Scholar]
- C. Barbier, S. Thibaud, F. Richar, and P. Picart, “Size effects on material behavior in micro-forming,” Int. J. Mater. Forum, vol. 2, no. 1, pp. 625–628, 2009. [CrossRef] [Google Scholar]
- W. Yun, D. Peilong, X. Zhenying, Y. Hua, and W. Jiangping, “A constitutive model for thin sheet metal in microforming considering first order size effects,” Mater. Descr., vol. 31, no. 2, pp. 1010–1014, 2010. [CrossRef] [Google Scholar]
- K. B. S. Couto, S. R. Claves, W. H. Van Geertruyden, W. Z. Misiolek, and M. Gonclaves, “Effects of homogenisation treatment on microstructure and hot ductility of aluminium alloy 6063,” J. Mater. Sci. Technol., vol. 21, no. 2, pp. 263–268, 2015. [Google Scholar]
- M. W. Fu, B. Yang, and W. L. Chan, “Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet,” J. Mater. Process Technol., vol. 213, no. 1, pp. 101–110, 2013. [CrossRef] [Google Scholar]
- Y. Bai and M. Yang, “Investigation on mechanism of metal foil surface finishing with vibration-assisted microforging,” J. Mater. Process. Technol., vol. 213, no. 3, pp. 330–336, 2013. [CrossRef] [Google Scholar]
- S. Wang, W. Zhuang, D. Balint, and J. Lin, “A virtual crystal plasticity simulation tool for micro-forming,” in Procedia Engineering, 2009, vol. 1, pp. 75–78. [CrossRef] [Google Scholar]
- J. H. Deng, M. W. Fu, and W. L. Chan, “Size effect on material surface deformation behavior in micro-forming process,” Mater. Sci. Eng., vol. A, no. 528, pp. 4799–4806, 2011. [CrossRef] [Google Scholar]
- M. Rosochowska, A. Rosochowski, and L. Olejnik, “FE simulation of micro-extrusion of a conical pin,” Int. J. Mater. Forum, vol. 3, no. 1, pp. 423–426, 2010. [CrossRef] [Google Scholar]
- S. A. Parasız, B. L. Kinsey, N. Mahayatsanunb, and J. Caob, “Effect of specimen size and grain size on deformation in microextrusion,” J. Manuf. Sci., vol. 13, pp. 153–159, 2011. [Google Scholar]
- Q. Zhu, C. Wang, H. Qin, G. Chen, and P. Zhang, “Effect of the grain size on the microtensile deformation and fracture behaviors of a nickel-based superalloy via EBSD and in-situ synchrotron radiation X-ray tomography,” Mater. Charact., vol. 156, 2019, doi: 10.1016/j.matchar.2019.109875. [Google Scholar]
- U. Engel and R. Eckstein, “Micro forming from basic research to its realization,” J. Mater. Process Technol., vol. 125, no. 126, pp. 35–44, 2002. [CrossRef] [Google Scholar]
- F. K. Chen and J. W. Tsai, “A study of size effect in micro-forming with micro-hardness tests,” J. Mater. Process. Technol., vol. 177, pp. 146–149, 2006. [CrossRef] [Google Scholar]
- W. L. Chan, M. W. Fu, and J. Lu, “The size effect on micro deformation behaviour in micro-scale plastic deformation,” Mater. Descr., vol. 32, pp. 198–206, 2011. [CrossRef] [Google Scholar]
- Z. Fan, “The grain-size dependence of ductile fracture toughness of polycrystalline metals and alloys,” Mater. Sci. Eng., vol. A, no. 191, pp. 73–83, 1995. [CrossRef] [Google Scholar]
- M. A. Greenfield and H. Margolin, “The interrelationship of fracture toughness and microstructure in a Ti–5.25Al– 5.5V–0.9Fe–0.5Cu alloy,” Matall. Trans., vol. 2, no. 3, pp. 841–847, 1971. [CrossRef] [Google Scholar]
- A. Rosenfeld and A. Kak, Digital picture processing. Cambridge. Academic Press, 1982. [Google Scholar]
- M. D. Levine, Vision in man and machine. New york: McGraw-Hill, 1985. [Google Scholar]
- W. Kim and Y. K. Sa, “Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears,” Scr. Mater., vol. 54, pp. 1391–1395, 2006. [CrossRef] [Google Scholar]
- N. Gao, C. T. Wang, R. J. K. Wood, and T. G. Langdon, “Tribological properties of ultrafine-grained materials processed by severe plastic deformation,” J. Mater. Sci., vol. 47, pp. 4779–4797, 2012. [CrossRef] [Google Scholar]
- L. H. Manjunatha and P. Dinesh, “Hardness and wear properties of extruded MWCNT-reinforced with 6061Al metal matrix composites,” Int. J. Sci. Eng. Res., vol. 4, no. 4, pp. 974–990, 2013. [Google Scholar]
- N. Soltani, H. R. J. Nodooshan, A. Bahrami, M. I. G. PechCanul, W. Liu, and G. Wu, “Effect of hot extrusion on wear properties of Al–15 wt.% Mg2Si in-situ metal matrix composites,” Mater. Descr., vol. 53, pp. 774–781, 2014. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.