Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01230 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/e3sconf/202343001230 | |
Published online | 06 October 2023 |
- O. Ogunkunle and N. A. Ahmed, “A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines,” Energy Reports, vol. 5, pp. 1560–1579, Nov. 2019, doi: 10.1016/j.egyr.2019.10.028. [CrossRef] [Google Scholar]
- E. G. Giakoumis, C. D. Rakopoulos, A. M. Dimaratos, and D. C. Rakopoulos, “Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends,” Progress in Energy and Combustion Science, vol. 38, no. 5, pp. 691–715, Oct. 2012, doi: 10.1016/j.pecs.2012.05.002. [CrossRef] [Google Scholar]
- A. F. Lee, J. A. Bennett, J. C. Manayil, and K. Wilson, “Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification,” Chem. Soc. Rev., vol. 43, no. 22, pp. 7887–7916, 2014, doi: 10.1039/C4CS00189C. [CrossRef] [PubMed] [Google Scholar]
- F. Ferella, G. Mazziotti Di Celso, I. De Michelis, V. Stanisci, and F. Vegliò, “Optimization of the transesterification reaction in biodiesel production,” Fuel, vol. 89, no. 1, pp. 36–42, Jan. 2010, doi: 10.1016/j.fuel.2009.01.025. [CrossRef] [Google Scholar]
- S. S. Ail and S. Dasappa, “Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 267–286, May 2016, doi: 10.1016/j.rser.2015.12.143. [CrossRef] [Google Scholar]
- C.-H. Su, “Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production,” Applied Energy, vol. 104, pp. 503–509, Apr. 2013, doi: 10.1016/j.apenergy.2012.11.026. [CrossRef] [Google Scholar]
- S. Basumatary, B. Nath, and P. Kalita, “Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis,” Journal of Renewable and Sustainable Energy, vol. 10, no. 4, p. 043105, Jul. 2018, doi: 10.1063/1.5043328. [CrossRef] [Google Scholar]
- M. S. Sinaga, S. Pandia, T. F. Tarigan, and W. G. Tiffani, “Utilization of cacao peel waste to K 2 O heterogeneous catalyst in biodiesel synthesis by waste cooking oil: effect of catalyst calcination temperature,” IOP Conference Series: Earth and Environmental Science, vol. 205, p. 012031, Dec. 2018, doi: 10.1088/1755-1315/205/1/012031. [CrossRef] [Google Scholar]
- W. Roschat, T. Siritanon, B. Yoosuk, and V. Promarak, “Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst,” Energy Conversion and Management, vol. 108, pp. 459–467, Jan. 2016, doi: 10.1016/j.enconman.2015.11.036. [CrossRef] [Google Scholar]
- N. M. Deraz, “The importance of catalyst preparation,” Journal of Industrial and Environmental Chemistry, vol. 2, no. 1, 2018. [Google Scholar]
- I. M. Rizwanul Fattah et al., “State of the Art of Catalysts for Biodiesel Production,” Frontiers in Energy Research, vol. 8. 2020. doi: 10.3389/fenrg.2020.00101. [CrossRef] [PubMed] [Google Scholar]
- X. Chen, W.-W. Qian, X.-P. Lu, and P.-F. Han, “Preparation of biodiesel catalysed by KF/CaO with ultrasound,” Natural Product Research, vol. 26, no. 13, pp. 1249–1256, Jul. 2012, doi: 10.1080/14786419.2011.564581. [CrossRef] [PubMed] [Google Scholar]
- E. Li and V. Rudolph, “Transesterification of Vegetable Oil to Biodiesel over MgO-Functionalized Mesoporous Catalysts,” Energy & Fuels, vol. 22, no. 1, pp. 145–149, Jan. 2008, doi: 10.1021/ef700290u. [CrossRef] [Google Scholar]
- M. Di Serio et al., “Vanadyl phosphate catalysts in biodiesel production,” Applied Catalysis A: General, vol. 320, pp. 1–7, Mar. 2007, doi: 10.1016/j.apcata.2006.11.025. [CrossRef] [Google Scholar]
- S. Ramu, N. Lingaiah, B. L. A. Prabhavathi Devi, R. B. N. Prasad, I. Suryanarayana, and P. S. Sai Prasad, “Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity,” Applied Catalysis A: General, vol. 276, no. 1–2, pp. 163–168, Nov. 2004, doi: 10.1016/j.apcata.2004.08.002. [CrossRef] [Google Scholar]
- S. Nakagaki et al., “Use of anhydrous sodium molybdate as an efficient heterogeneous catalyst for soybean oil methanolysis,” Applied Catalysis A: General, vol. 351, no. 2, pp. 267–274, Dec. 2008, doi: 10.1016/j.apcata.2008.09.026. [CrossRef] [Google Scholar]
- C. GARCIA, S. TEIXEIRA, L. MARCINIUK, and U. SCHUCHARDT, “Transesterification of soybean oil catalyzed by sulfated zirconia,” Bioresource Technology, vol. 99, no. 14, pp. 6608–6613, Sep. 2008, doi: 10.1016/j.biortech.2007.09.092. [CrossRef] [PubMed] [Google Scholar]
- X. Liu, X. Piao, Y. Wang, and S. Zhu, “Calcium Ethoxide as a Solid Base Catalyst for the Transesterification of Soybean Oil to Biodiesel,” Energy & Fuels, vol. 22, no. 2, pp. 1313–1317, Mar. 2008, doi: 10.1021/ef700518h. [CrossRef] [Google Scholar]
- X. Liu, X. Piao, Y. Wang, S. Zhu, and H. He, “Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol,” Fuel, vol. 87, no. 7, pp. 1076–1082, Jun. 2008, doi: 10.1016/j.fuel.2007.05.059. [CrossRef] [Google Scholar]
- B. Wang et al., “Advances in Recycling and Utilization of Agricultural Wastes in China: Based on Environmental Risk, Crucial Pathways, Influencing Factors, Policy Mechanism,” Procedia Environmental Sciences, vol. 31, pp. 12–17, 2016, doi: 10.1016/j.proenv.2016.02.002. [CrossRef] [Google Scholar]
- F. Obi, B. Ugwuishiwu, and J. Nwakaire, “AGRICULTURAL WASTE CONCEPT, GENERATION, UTILIZATION AND MANAGEMENT,” Nigerian Journal of Technology, vol. 35, no. 4, p. 957, Sep. 2016, doi: 10.4314/njt.v35i4.34. [Google Scholar]
- C. N. Foster, Agricultural wastes: Characteristics, types and management. 2015. [Google Scholar]
- Y. Wu et al., “Bioenergy production and environmental impacts,” Geoscience Letters, vol. 5, no. 1, p. 14, Dec. 2018, doi: 10.1186/s40562-018-0114-y. [PubMed] [Google Scholar]
- N. Arun and A. K. Dalai, “Environmental and socioeconomic impact assessment of biofuels from lignocellulosic biomass,” in Lignocellulosic Biomass to Liquid Biofuels, Elsevier, 2020, pp. 283–299. doi: 10.1016/B978-0-12-815936-1.00009-5. [Google Scholar]
- L. M. Correia et al., “Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil,” Bioresource Technology, vol. 151, 2014, doi: 10.1016/j.biortech.2013.10.046. [Google Scholar]
- O. Ogunkunle, O. O. Oniya, and A. O. Adebayo, “Yield Response of Biodiesel Production from Heterogeneous and Homogeneous Catalysis of Milk Bush Seed (Thevetia peruviana) Oil,” Energy and Policy Research, vol. 4, no. 1, pp. 21–28, Jan. 2017, doi: 10.1080/23815639.2017.1319772. [CrossRef] [Google Scholar]
- E. Betiku and S. O. Ajala, “Modeling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogeneous base catalyst: A case of artificial neural network vs. response surface methodology,” Industrial Crops and Products, vol. 53, pp. 314–322, Feb. 2014, doi: 10.1016/j.indcrop.2013.12.046. [CrossRef] [Google Scholar]
- E. Betiku, A. O. Etim, O. Pereao, and T. V. Ojumu, “Two-Step Conversion of Neem (Azadirachta indica) Seed Oil into Fatty Methyl Esters Using a Heterogeneous Biomass-Based Catalyst: An Example of Cocoa Pod Husk,” Energy and Fuels, vol. 31, no. 6, 2017, doi: 10.1021/acs.energyfuels.7b00604. [Google Scholar]
- Z.-E. Tang, S. Lim, Y.-L. Pang, S.-H. Shuit, and H.-C. Ong, “Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production,” Renewable Energy, vol. 158, pp. 91–102, Oct. 2020, doi: 10.1016/j.renene.2020.05.119. [CrossRef] [Google Scholar]
- S. M. Smith et al., “Transesterification of soybean oil using bovine bone waste as new catalyst,” Bioresource Technology, vol. 143, 2013, doi: 10.1016/j.biortech.2013.06.087. [Google Scholar]
- V. Vadery et al., “Room temperature production of jatropha biodiesel over coconut husk ash,” Energy, vol. 70, pp. 588–594, Jun. 2014, doi: 10.1016/j.energy.2014.04.045. [CrossRef] [Google Scholar]
- R. Luque et al., “Carbonaceous residues from biomass gasification as catalysts for biodiesel production,” Journal of Natural Gas Chemistry, vol. 21, no. 3, 2012, doi: 10.1016/S1003-9953(11)60360-5. [Google Scholar]
- S. H. Y. S. Abdullah et al., “A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production,” Renewable and Sustainable Energy Reviews, vol. 70, pp. 1040–1051, Apr. 2017, doi: 10.1016/j.rser.2016.12.008. [CrossRef] [Google Scholar]
- A. Talukdar and D. Chandra Deka, “Preparation and Characterization of a Heterogeneous Catalyst from Water Hyacinth (Eichhornia crassipes): Catalytic Application in the Synthesis of bis(indolyl)methanes and bis(pyrrolyl) methanes Under Solvent Free Condition,” Current Catalysis, vol. 5, no. 1, pp. 51–65, Apr. 2016, doi: 10.2174/2211544705666160310234657. [CrossRef] [Google Scholar]
- V. J. Aimikhe and G. B. Lekia, “An Overview of the Applications of Periwinkle (Tympanotonus fuscatus) Shells,” Current Journal of Applied Science and Technology, 2021, doi: 10.9734/cjast/2021/v40i1831442. [Google Scholar]
- B. O. Orji, G. E. Igbokwe, C. O. Anagonye, and E. U. Modo, “Chemical content of the periwinkle shell and its suitability in thin layer chromatography,” International Journal of Chemistry Studies, vol. 1, no. 2, pp. 9–11, 2017. [Google Scholar]
- R. Kohli and K. L. Mittal, “Methods for Assessing Surface Cleanliness,” in Developments in Surface Contamination and Cleaning, Volume 12, Elsevier, 2019, pp. 23–105. doi: 10.1016/B978-0-12-816081-7.00003-6. [Google Scholar]
- A. Mannu, S. Garroni, J. I. Porras, and A. Mele, “Available technologies and materials for waste cooking oil recycling,” Processes, vol. 8, no. 3. 2020. doi: 10.3390/PR8030366. [CrossRef] [Google Scholar]
- O. Ogunkunle and N. A. Ahmed, “A robust statistical model for optimising biodiesel production from waste cooking oil using non-synthetic caustic potash,” International Journal of Ambient Energy, pp. 1–14, Apr. 2021, doi: 10.1080/01430750.2021.1918242. [Google Scholar]
- J. O. Oyelade, D. O. Idowu, O. O. Oniya, and O. Ogunkunle, “Optimization of biodiesel production from sandbox (Hura crepitans L.) seed oil using two different catalysts,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 39, no. 12, pp. 1242–1249, 2017, doi: 10.1080/15567036.2017.1320691. [CrossRef] [Google Scholar]
- O. Ogunkunle and N. A. Ahmed, “Response surface analysis for optimisation of reaction parameters of biodiesel production from alcoholysis of Parinari polyandra seed oil,” International Journal of Sustainable Energy, vol. 38, no. 7, pp. 630–648, Aug. 2019, doi: 10.1080/14786451.2018.1554661. [CrossRef] [Google Scholar]
- B. Kaur and S. N. Bhattacharya, “Automotive dyes and pigments,” in Handbook of Textile and Industrial Dyeing, 2011. doi: 10.1016/B978-1-84569-696-2.50007-7. [Google Scholar]
- S. Trisupakitti, C. Ketwong, W. Senajuk, C. Phukapak, and S. Wiriyaumpaiwong, “GOLDEN APPLE CHERRY SNAIL SHELL AS CATALYST FOR HETEROGENEOUS TRANSESTERIFICATION OF BIODIESEL,” Brazilian Journal of Chemical Engineering, vol. 35, no. 4, pp. 1283–1291, Dec. 2018, doi: 10.1590/0104-6632.20180354s20170537. [CrossRef] [Google Scholar]
- I. B. Laskar, K. Rajkumari, R. Gupta, S. Chatterjee, B. Paul, and L. Rokhum, “Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil,” RSC Advances, vol. 8, no. 36, pp. 20131–20142, 2018, doi: 10.1039/c8ra02397b. [CrossRef] [PubMed] [Google Scholar]
- A. G. Checa, “Physical and biological determinants of the fabrication of Molluscan shell microstructures,” Frontiers in Marine Science, vol. 5, no. SEP. 2018. doi: 10.3389/fmars.2018.00353. [CrossRef] [Google Scholar]
- Abdullah, R. N. Rahmawati Sianipar, D. Ariyani, and I. F. Nata, “Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts,” Sustainable Environment Research, vol. 27, no. 6, 2017, doi: 10.1016/j.serj.2017.07.002. [Google Scholar]
- P. D. Patil, V. G. Gude, H. K. Reddy, T. Muppaneni, and S. Deng, “Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes,” Journal of Environmental Protection, 2012, doi: 10.4236/jep.2012.31013. [Google Scholar]
- K. Shende, S. Sonage, P. Dange, and M. Tandale, “Optimization of biodiesel production process from waste cooking oil using homogeneous and heterogeneous catalysts through transesterification process,” in Techno-Societal 2018 - Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications, 2020. doi: 10.1007/978-3-030-16848-3_48. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.