Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01238 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/e3sconf/202343001238 | |
Published online | 06 October 2023 |
- C. S. Abima, S. A. Akinlabi, N. Madushele, O. S. Fatoba, and E. T. Akinlabi, “Multi-objective optimization of process parameters in TIG-MIG welded AISI 1008 steel for improved structural integrity,” International Journal of Advanced Manufacturing Technology, no. https://doi.org/10.1007/s00170-021-08181-1, 2021, doi: 10.1007/s00170-021-08181-1. [Google Scholar]
- S. A. Akinlabi, M. P. Mashinini, C. S. Abima, O. S. Fatoba, and E. T. Akinlabi, “TIG & MIG Hybrid Welded Steel Joint : A Review,” in Proceedings of the International Conference on Industrial Engineering and Operations Management Toronto, Canada, October 23-25, 2019, pp. 801–811. [Google Scholar]
- R. Zong, J. Chen, and C. Wu, “A comparison of TIG-MIG hybrid welding with conventional MIG welding in the behaviors of arc , droplet and weld pool,” Journal of Materials Processing Tech., vol. 270, no. March, pp. 345–355, 2019, doi: 10.1016/j.jmatprotec.2019.03.003. [CrossRef] [Google Scholar]
- Y. Bin Zhou, D. S. Fang, and L. M. Liu, “Root welding of V-groove thick plate without backing plate by MAG-TIG double-arc welding,” International Journal of Precision Engineering and Manufacturing, vol. 18, no. 4, pp. 623–628, 2017, doi: 10.1007/s12541-017-0074-8. [CrossRef] [Google Scholar]
- J. Chen, C. S. Wu, and M. A. Chen, “Improvement of welding heat source models for TIG-MIG hybrid welding process,” Journal of Manufacturing Processes, vol. 16, no. 4, pp. 485–493, 2014, doi: 10.1016/j.jmapro.2014.06.002. [CrossRef] [Google Scholar]
- J. Chen, R. Zong, C. Wu, G. K. Padhy, and Q. Hu, “Influence of low current auxiliary TIG arc on high speed TIG-MIG hybrid welding,” Journal of Materials Processing Technology, vol. 243, pp. 131–142, 2017, doi: 10.1016/j.jmatprotec.2016.12.012. [CrossRef] [Google Scholar]
- Z. Ye et al., “Microstructure and mechanical properties of 5052 aluminum alloy/mild steel butt joint achieved by MIG-TIG double-sided arc welding-brazing,” Materials and Design, vol. 123, pp. 69–79, 2017, doi: 10.1016/j.matdes.2017.03.039. [CrossRef] [Google Scholar]
- J. Chen, C. S. Wu, and M. A. Chen, “Improvement of welding heat source models for TIG-MIG hybrid welding process,” vol. 16, pp. 485–493, 2014, doi: 10.1016/j.jmapro.2014.06.002. [Google Scholar]
- X. Meng, G. Qin, Y. Zhang, B. Fu, and Z. Zou, “High speed TIG-MAG hybrid arc welding of mild steel plate,” Journal of Materials Processing Technology, vol. 214, no. 11, pp. 2417–2424, 2014, doi: 10.1016/j.jmatprotec.2014.05.020. [CrossRef] [Google Scholar]
- [10] O. S. Sahasrabudhe and D. N. Raut, “Benchmarking of Hybrid TIG-MAG Arc Welding for Mild Steel,” Transactions of the Indian Institute of Metals, vol. 72, no. 3, pp. 801–810, 2019, doi: 10.1007/s12666-018-1536-0. [CrossRef] [Google Scholar]
- S. Md. Khan, V. Kumar, P. Mandal, and C. subhas Mondal, “Experimental Investigation of Combined TIG-MIG Welding for 304 Stainless Steel Plates Experimental Investigation of Combined TIG-MIG Welding for 304 Stainless Steel Plates.” IOP Conference Series: Materials Science and Engineering, 2018, vol. 377, no. 012067. doi: 10.1088/1757-899X/377/1/012067. [Google Scholar]
- C. Schneider, C. Lisboa, R. Silva, and R. Lermen, “Optimizing the Parameters of TIG-MIG/MAG Hybrid Welding on the Geometry of Bead Welding Using the Taguchi Method,” Journal of Manufacturing and Materials Processing, vol. 1, no. 2, p. 14, 2017, doi: 10.3390/jmmp1020014. [Google Scholar]
- X. Meng, G. Qin, Y. Zhang, B. Fu, and Z. Zou, “High speed TIG – MAG hybrid arc welding of mild steel plate,” Journal of Materials Processing Technology, vol. 214, no. 11, pp. 2417–2424, 2014, doi: 10.1016/j.jmatprotec.2014.05.020. [CrossRef] [Google Scholar]
- C. A. Somani and D. I. Lalwani, “Experimental investigation of TIG-MIG hybrid welding process on austenitic stainless steel,” Materials Today: Proceedings, vol. 18, pp. 4826–4834, 2019, doi: 10.1016/j.matpr.2019.07.472. [CrossRef] [Google Scholar]
- H. Aydin, A. Bayram, U. Esme, Y. Kazancoglu, and O. Guven, “Application of grey relation analysis (GRA) and Taguchi method for the parametric optimization of friction stir welding (FSW) process,” Materiali in Tehnologije, vol. 44, no. 4, pp. 205–211, 2010. [Google Scholar]
- S. Jajimoggala, R. Dhananjay, V. V. K. Lakshmi, and Shabana, “Multi-response optimization of hot extrusion process parameters using FEM and Grey relation based Taguchi method,” Materials Today: Proceedings, vol. 18, pp. 389–401, 2019, doi: 10.1016/j.matpr.2019.06.316. [CrossRef] [Google Scholar]
- A. N. Haq, P. Marimuthu, and R. Jeyapaul, “Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method,” Int J Adv Manuf Technol, vol. 37, pp. 250–255, 2008, doi: 10.1007/s00170-007-0981-4. [CrossRef] [Google Scholar]
- K. N. Wakchaure, A. G. Thakur, V. Gadakh, and A. Kumar, “Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy 6082-T6 Using hybrid Taguchi-Grey Relation Analysis- ANN Method,” Materials Today: Proceedings, vol. 5, no. 2, pp. 7150–7159, 2018, doi: 10.1016/j.matpr.2017.11.380. [CrossRef] [Google Scholar]
- A. K. Srirangan and S. Paulraj, “Multi-response optimization of process parameters for TIG welding of Incoloy 800HT by Taguchi grey relational analysis,” Engineering Science and Technology, an International Journal, vol. 19, no. 2, pp. 811–817, 2016, doi: 10.1016/j.jestch.2015.10.003. [CrossRef] [Google Scholar]
- A. Ahmad and S. Alam, “Parametric optimization of TIG welding using Response Surface Methodology,” Materials Today: Proceedings, vol. 18, pp. 3071–3079, 2019, doi: 10.1016/j.matpr.2019.07.179. [CrossRef] [Google Scholar]
- E. J. Martinez-conesa, J. A. Egea, V. Miguel, C. Toledo, and J. L. Meseguer-valdenebro, “Optimization of geometric parameters in a welded joint through response surface methodology,” Construction and Building Materials, vol. 154, pp. 105–114, 2017, doi: 10.1016/j.conbuildmat.2017.07.163. [CrossRef] [Google Scholar]
- M. S. Chandra, P. P. Kumar, B. Asish, and R. Ramesh, “Determination of Tungsten Inert Gas Welding Input Parameters to Attain Maximum Tensile Strength of 316l Austenitic Stainless Steel,” Journal of Mechanical Engineering, vol. 68, no. 3, pp. 231–248, 2018, doi: 10.2478/scjme-2018-0037. [Google Scholar]
- S. Srivastava and R. K. Garg, “Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology,” Journal of Manufacturing Processes, vol. 25, pp. 296–305, 2017, doi: 10.1016/j.jmapro.2016.12.016. [CrossRef] [Google Scholar]
- R. Padmanaban, R. V. Vignesh, A. P. Povendhan, and A. P. Balakumharen, “Optimizing the tensile strength of friction stir welded dissimilar aluminium alloy joints using particle swarm optimization,” in Materials Today: Proceedings, 2018, vol. 5, no. 11, pp. 24820–24826. doi: 10.1016/j.matpr.2018.10.280. [Google Scholar]
- Z. Gao et al., “Parameters optimization of hybrid fi ber laser-arc butt welding on 316L stainless steel using Kriging model and GA,” Optics and Laser Technology, vol. 83, pp. 153–162, 2016, doi: 10.1016/j.optlastec.2016.04.001. [CrossRef] [Google Scholar]
- Y. Yang, L. Cao, Q. Zhou, C. Wang, Q. Wu, and P. Jiang, “Multi-objective process parameters optimization of Laser-magnetic hybrid welding combining Kriging and NSGA-II,” Robotics and Computer–Integrated Manufacturing, vol. 49, no. December 2016, pp. 253–262, 2018, doi: 10.1016/j.rcim.2017.07.003. [CrossRef] [Google Scholar]
- I. N. Tansel, M. Demetgul, H. Okuyucu, and A. Yapici, “Optimizations of friction stir welding of aluminum alloy by using genetically optimized neural network,” International Journal of Advanced Manufacturing Technology, vol. 48, no. 1–4, pp. 95–101, 2010, doi: 10.1007/s00170-009-2266-6. [CrossRef] [Google Scholar]
- H. Wang, J. Li, and L. Liu, “Process optimization and weld forming control based on GA-BP algorithm for riveting-welding hybrid bonding between magnesium and CFRP,” Journal of Manufacturing Processes, vol. 70, no. June, pp. 97–107, 2021, doi: 10.1016/j.jmapro.2021.08.024. [CrossRef] [Google Scholar]
- M. Azadi Moghaddam and F. Kolahan, “Modeling and optimization of A-GTAW process using back propagation neural network and heuristic algorithms,” International Journal of Pressure Vessels and Piping, vol. 194, no. PA, p. 104531, 2021, doi: 10.1016/j.ijpvp.2021.104531. [CrossRef] [Google Scholar]
- M. Zeraati, R. Arshadizadeh, N. P. S. Chauhan, and G. Sargazi, “Genetic algorithm optimization of magnetic properties of Fe-Co-Ni nanostructure alloys prepared by the mechanical alloying by using multi-objective artificial neural networks for the core of transformer,” Materials Today Communications, vol. 28, no. May, p. 102653, 2021, doi: 10.1016/j.mtcomm.2021.102653. [CrossRef] [Google Scholar]
- T. Medhi, S. A. I. Hussain, B. S. Roy, and S. C. Saha, “An intelligent multi-objective framework for optimizing friction-stir welding process parameters,” Applied Soft Computing, vol. 104, p. 107190, 2021, doi: 10.1016/j.asoc.2021.107190. [CrossRef] [Google Scholar]
- Y. Chang, J. Yue, R. Guo, W. Liu, and L. Li, “Penetration quality prediction of asymmetrical fillet root welding based on optimized BP neural network,” Journal, vol. 50, no. September 2019, pp. 247–254, 2020, doi: 10.1016/j.jmapro.2019.12.022. [Google Scholar]
- C. Abima, S. Akinlabi, N. Madushele, and E. Akinlabi, “Process Parameters Optimization for GMA Welding of AISI 1008 Steel Joints for Optimal Tensile Strength Revue des Composites et des Matériaux Avancés-Journal of Composite and Advanced Materials Process Parameters Optimization for GMA Welding of AISI 1008 S,” Revue des Composites et des Matériaux avancés, vol. 6, no. December, pp. 349–354, 2021, doi: 10.18280/rcma.310606. [Google Scholar]
- C. S. Abima, S. A. Akinlabi, N. Madushele, and E. T. Akinlabi, “Comparative study between TIG-MIG Hybrid, TIG and MIG welding of 1008 steel joints for enhanced structural integrity,” Scientific African, vol. 17, pp. 1–11, 2022, doi: 10.1016/j.sciaf.2022.e01329. [CrossRef] [Google Scholar]
- J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Trans Syst Man Cybern, vol. 23, no. 3, pp. 665–685, 1993, doi: 10.1109/21.256541. [CrossRef] [Google Scholar]
- A. J. Kilani, O. Adeleke, and C. A. Fapohunda, “Application of machine learning models to investigate the performance of concrete reinforced with oil palm empty fruit brunch (OPEFB) fibers,” Asian Journal of Civil Engineering, vol. 23, no. 2, pp. 299–320, 2022, doi: 10.1007/s42107-022-00424-0. [CrossRef] [Google Scholar]
- O. Adeleke, S. Akinlabi, T. C. Jen, and I. Dunmade, “A machine learning approach for investigating the impact of seasonal variation on physical composition of municipal solid waste,” J Reliab Intell Environ, 2022, doi: 10.1007/s40860-021-00168-9. [Google Scholar]
- O. Adeleke, S. Akinlabi, T. C. Jen, P. A. Adedeji, and I. Dunmade, “Evolutionary-based neuro-fuzzy modelling of combustion enthalpy of municipal solid waste,” Neural Comput Appl, vol. 2, 2022, doi: 10.1007/s00521-021-06870-2. [Google Scholar]
- O. Sanni, O. Adeleke, K. Ukoba, J. Ren, and T.-C. Jen, “Application of machine learning models to investigate the performance of stainless steel type 904 with agricultural waste,” Journal of Materials Research and Technology, vol. 20, pp. 4487–4499, Sep. 2022, doi: 10.1016/j.jmrt.2022.08.076. [CrossRef] [Google Scholar]
- K. O. Olatunji, N. A. Ahmed, D. M. Madyira, A. O. Adebayo, O. Ogunkunle, and O. Adeleke, “Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction,” Renew Energy, vol. 189, pp. 288–303, Apr. 2022, doi: 10.1016/j.renene.2022.02.088. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.