Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01242
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202343001242
Published online 06 October 2023
  1. Dooley B, Anderson B, 2008, Trends in HRSG Reliability – A 10 Year Review. https://www.ccj-online.com/wp-content/uploads/2022/03/BobBarry-10-yr-summary-Final-Draft-050419.pdf [Google Scholar]
  2. Ghosh, D., Ray, S., Roy, H, Mandal, N. and Shukla, A. K..,”High-Temperature Graphitization Failure of Primary Superheater Tube” High-Temperature Materials and Processes, vol. 34, no. 8, pp. 777-781,(2015) https://doi.org/10.1515/htmp-2014-0137 [CrossRef] [Google Scholar]
  3. Rakhoh, An Overview of Superheated Steam and Its Applications, Rakhoh Boiler,https://rakhoh.com/en/an-overview-of-superheated-steam-and-its-applications/York: E-Publishing Inc; 1999, p. 281-304, (2021). [Google Scholar]
  4. Oh S, Kim J,,* Han S, Kim K, Yun D2, and Kim D, 2022, Analysis Platen Superheater Tube Degradation in Thermal Power Plants via Destructive/Non-Destructive Characteristic Evaluation, Materials (Basel),(2022) Jan; 15(2): 581,Doi: 10.3390/ma15020581. [CrossRef] [PubMed] [Google Scholar]
  5. Madejski P, Taler D, Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation, Energy Conversion and Management 71:131–137, (2013) Doi: 10.1016/j.enconman.2013.03.025. [CrossRef] [Google Scholar]
  6. Hagarová, M.; Baranová, G.; Fujda, M.; Matvija, M.; Hor ˇnak, P.; Bednarˇcík, J.; Yudina, D. High-Temperature Oxidation Behavior of Creep Resistant Steels in Water Vapour Containing Environments. Materials, 15, 616,(2022),https://doi.org/10.3390/ma15020616. [CrossRef] [PubMed] [Google Scholar]
  7. Liu, G.; Yang, X.; Yang, X .; Liang, K.; An, D.; Wu, D.; Ren, X. Typical Damage Prediction and Reliability Analysis of Superheater Tubes in Power Station Boilers Based on Multisource Data Analysis. Energies, 15, 1005, (2022), https://doi.org/10.3390/en15031005 [CrossRef] [Google Scholar]
  8. Jackson P S., F Andreas, W Alexandria, Failure Analysis of SA-213 T91 HRSG Superheater Tube Weld, July, ASME 2019 Power Conference, (2019), Doi: 10.1115/POWER2019-1890 [Google Scholar]
  9. Kapayeva S D., Bergander M J., Vakhguelt A, Khairaliyev S I., Remaining life assessment for boiler tubes affected by combined effect of wall thinning and overheating, Journal of Vibro engineering, Vol. 19, Issue 8, , p. 5892-5907, (2017) https://doi.org/10.21595/jve.2017.18219 [CrossRef] [Google Scholar]
  10. Robin T. T, Design of Boiler-Super heater Units For Representative Cesium and Potassium Space Power Plants, , U.S. Atomic Energy Commission, (1968), https://technicalreports.ornl.gov/1968/3445606041814.pdf [Google Scholar]
  11. ASTM A370 / ASME SA-370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products,(2017), http://www.metalspiping.com/wp-content/uploads/2017/12/astm-a370-asme-sa-370.pdf [Google Scholar]
  12. Shami A, Torshizi S E M, Jahangiri A, 2020, Failure Analysis and Remedial Solution Suggestion for Superheater Tubes of a Power Plant Boiler, May, Transactions of the Indian Institute of Metals 73(7), (2020), Doi: 10.1007/s12666-020-01968-y [Google Scholar]
  13. Felkowski Ł, Mędrala J, Analysis of superheater tubes failure, E3S Web of Conferences 82, 01002, (2018), https://doi.org/10.1051/e3sconf/20198201002 . [CrossRef] [EDP Sciences] [Google Scholar]
  14. Kanda H, Enuma Y, Futagami S, Kawamura M, Ushiki H, Ogumo S, Ichihara T, Nakashima T, A Study on The Straight Double-Walled Tube Steam Generator Design Against Sodium-Engineering, (2016), DOI: 10.1115/ICONE24-60156 [Google Scholar]
  15. Khodir S. A., Abdel-Aleem H., Corrosion Fatigue of Horizontal, , Auxiliary Boiler Carbon Steel Tubes, (2016), https://www.researchgate.net/publication/311885945 [Google Scholar]
  16. Saha A, Roy H. , Failure investigation of a secondary super heater tube in a 140 MW thermal power plant, Case Studies in Engineering Failure Analysis, , (2017), https://doi.org/10.1016/j.csefa.2017.05.001 [Google Scholar]
  17. Thurston E, Inspecting for Corrosion Fatigue,(2008), https://www.power-eng.com/coal/inspecting-for-corrosion-fatigue/#gref [Google Scholar]
  18. Aboulhassane O, El Hakimi A, Chamat A, and Touache A, Evaluation methodologies of damage related issues for heat exchangers in the thermal storage energy system,(2022), https://doi.org/10.1051/e3sconf/202233600026 [Google Scholar]
  19. Liu G, Yang X, Yang X, Liang K, An D, Wu D, Ren X , Typical Damage Prediction and Reliability Analysis of Superheater Tubes in Power Station Boilers Based on Multisource Data Analysis, Energies , 15(3), 1005, (2022), https://doi.org/10.3390/en15031005 [CrossRef] [Google Scholar]
  20. Haghighat-Shishavan B, Firouzi-Nerbin H, Nazarian-samani M, Ashtari P, Nasirpouri F , Failure analysis of a superheater tube ruptured in a power plant boiler: Main causes and preventive strategies,(2019) , https://doi.org/10.1016/j.engfailanal.2019.01.016 [Google Scholar]
  21. Duda P. Felkowski L. Purzyńska H, Duda A, Analysis of the power boiler superheater strain-and-stress state under creep conditions, Materials at High Temperatures ,volume 36, (2019), Pages 531-539. https://doi.org/10.1080/09603409.2019.1648364 [CrossRef] [Google Scholar]
  22. Liu G, Yang X, Yang X, Liang K, 2022 Typical Damage Prediction and Reliability Analysis of Super heater Tubes in Power Station Boilers Based on Multisource Data Analysis, January, Energies 15(3):1005,(2022), Doi: 10.3390/en15031005 [CrossRef] [Google Scholar]
  23. Mandal N, Shukla A K, Ghosh D G, Labs V, Ray S, High Temperature Graphitization Failure of Primary Super heater Tube, December, High Temperature Material Processes 34(8), (2015), Doi: 10.1515/htmp-2014-0137. [Google Scholar]
  24. Uribe I, da Silveira T L, da Silveira T F, Graphitization in Low Alloy Steel Pressure Vessels and Piping,February, Journal of Failure Analysis and Prevention 11(1): 3-9, (2011), Doi:10.1007/s11668-010-9414-z [CrossRef] [Google Scholar]
  25. Ghosh D., Ray S., Roy H, Mandal N., Shukla A. K., High-Temperature Graphitization Failure of Primary Superheater Tube, , journal High Temperature Materials and Processes. (2015), https://doi.org/10.1515/htmp-2014-0137 [Google Scholar]
  26. Saha A, Roy H., Failure investigation of a secondary super heater tube in a 140 MW thermal power plant, , Case Studies in Engineering Failure Analysis, Volume 8, April 2017, Pages 57-60. (2017), https://doi.org/10.1016/j.csefa.2017.05.001 [CrossRef] [Google Scholar]
  27. Pramanick A.K., Das G., Das S.K., Ghosh M., Failure investigation of super heater tubes of coal fired power plant, Case Studies in Engineering Failure Analysis, Volume 9, October 2017, Pages 17-26, (2017), https://doi.org/10.1016/j.csefa.2017.06.001 [CrossRef] [Google Scholar]
  28. Abou-elazm A. S, El Mahallawi I, Abdel-Karim R, Rashad R, Failure Investigation of Secondary Superheater Tubes in a Power Boiler, January, Engineering Failure Analysis 16(1), (2009), Doi:10.1016/j.engfailanal.2008.06.024 [Google Scholar]
  29. Li Y, Chen H, Pan Z, Liang H, Wang Z, Feng Z, Li Z, Kuang Y, Failure analysis of superheater tubes in an air quenching cooler waste heat boiler, , Engineering Failure Analysis, Volume 131, January (2021), http://doi.org/10.1016/j.engfailanal.2021.1055869 [Google Scholar]
  30. Yasniy O, Pyndus Y, , Iasnii V, Lapusta Y. Residual lifetime assessment of thermal power plant superheater header, July, Engineering Failure Analysis,(2017), Doi:10.1016/j.engfailanal.2017.07.028, [Google Scholar]
  31. Gupta G, Chattopadhyaya S., 2017, Critical Failure Analysis of Superheater Tubes of Coal-Based Boiler,March. ,(2017), Doi:10.5545/sv-jme.2016.4188 [Google Scholar]
  32. De Klerk, G. A methodology to investigate the cause of quenching in once-through tower type power plant boilers. Faculty of Engineering and the Built Environment, Department of Mechanical Engineering,(2020) http://hdl.handle.net/11427/3262 [Google Scholar]
  33. Bakic G, Djukic M, Weld Geometry Defect Influence on Boiler Tube Structural Integrity, Proceeding of IIW International Congress “Welding and Joining Technologies for a Sustainable Development and Environment” The 1st South-East European Welding Congress, 24–26 May, Timisoara, Romania, (2006), pp. 169-179, (2006) : https://www.researchgate.net/publication/236626947 [Google Scholar]
  34. Mokhtar A A, Bahrin M K K, Failure Analysis of High Pressure High Temperature Super- Heater Outlet Header Tube in Heat Recovery Steam Generator, (2017) , DOI: 10.5772/intechopen.72116 [Google Scholar]
  35. Dudziak, T., Łukaszewicz, M., Simms, N. et al. 2016, Analysis of High Temperature Steam Oxidation of Superheater Steels Used in Coal Fired Boilers. Oxid Met 85, 171–187 (2016). https://doi.org/10.1007/s11085-015-9593-9 [CrossRef] [Google Scholar]
  36. Ehyaei M A, Estimation of condensate mass flow rate during purging time in heat recovery steam generator of combined cycle power plant, Thermal Science· January (2014). https://www.researchgate.net/publication/287581847 [Google Scholar]
  37. Rogers V, Heat Recovery Steam Generators: Vulnerable to Failure,July 28 (2016), https://insights.globalspec.com/article/2963/heat-recovery-steam-generators-vulnerable-to-failure . [Google Scholar]
  38. Hu Z, Heat-Resistant Steels, Microstructure Evolution and Life Assessment in Power Plants, January, Thermal Power Plants,( 2012), DOI:10.5772/26766 [Google Scholar]
  39. Alipour, Roozbeh and Nejad, Ali Farokhi. “Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature” International Journal of Materials Research, vol. 107, no. 5, (2016), pp. 406-412. https://doi.org/10.3139/146.111362 [CrossRef] [Google Scholar]
  40. Ganapathy V., Heat-Recovery Steam Generators: Understand the Basics, August 1996 Chemical Engineering Progress,(1996) , https://www.angelfire.com/md3/vganapathy/hrsgcep.pdf [Google Scholar]
  41. Erdeweghe S V, Baelb J V, Laenen B, D’haeseleer W, Influence of the pinch-point-temperature difference on the performance of the Preheat-parallel configuration for a low-temperature geothermally-fed CHP., 2017, Energy Procedia 129 (2017) 10-17. DOI:10.1016/j.egypro.2017.09.163 [CrossRef] [Google Scholar]
  42. Ahmed A, Esmaeil K K, Irfan M A., Al-Mufadi Fa, A., 2018, Design methodology of heat recovery steam generator in electric utility for waste heat recovery,2018, International Journal of Low-Carbon Technologies ,(2018), 13, 369–379. Doi:10.1093/ijlct/cty045 Advance Access Publication 12 September 2018 [Google Scholar]
  43. Neaga C, Floarea L, Influence of pinch and approach point on construction of a heat recovery steam generator in a combined cycle, 2009, U.P.B. Sci. Bull. Series D, Vol. 71, Iss. 4, (2009) [Google Scholar]
  44. Nordin A, Majid M A, Parametric study on effect of pinch and approach points on heat recovery steam generator performance at a district cooling system, June, Journal of -2636 (2017). Doi:10.15282/jmes.11.2.2017.6.0240 [Google Scholar]
  45. Pattison E, What is drop hammers?, (2020), WIKIBUMP.https://wikibump.com/what-is-drop-hammers/ [Google Scholar]
  46. HNG Engineering and Contracting Services, Water Hammer: The Mechanism,(2021), https://www.linkedin.com/pulse/water-hammer-mechanism-hng-engineering-and- contracting-services/ [Google Scholar]
  47. Han, Y.; Shi, W.; Xu, H.; Wang, J.; Zhou, L. Effects of Closing Times and Laws on Water Hammer in a Ball Valve Pipeline. Water, 14, 1497,(2022), https://doi.org/10.3390/ w14091497 [CrossRef] [Google Scholar]
  48. Ellmer M, How to improve air cooler vacuum steam condensers performance in the field, , Technical paper ID 309 for POWER-GEN EUROPE (2012), http://www.elflow.nl/wp-content/uploads/2013/04/papers/Powergen.Europe.2012.pdf [Google Scholar]
  49. Guyer J. P, An Introduction to Condensers and Auxiliary Equipment for Steam Power Plants,. Engineering & Transportation, (2018) https://www.amazon.com/Introduction-Condensers-Auxiliary-Equipment-Plants/dp/1980398194 [Google Scholar]
  50. Jan Havlík, Tomáš Dlouhý, 2016, Condensation of the air-steam mixture in a vertical tube condenser , EPJ Web of Conferences Volume 114, (2016). http://doi.org/10.1051/epjconf/201611402037 [Google Scholar]
  51. Lutao W., Yue X., Chong D.,Chen W., Experimental investigation on the phenomenon of steam condensation induced water hammer in a horizontal pipe, Experimental Thermal and Fluid Science (exp therm fluid SCI) 91,(2017), http://doi:10.1016/j.expthermflusci.2017.10.036 [Google Scholar]
  52. Gu H., Qi C., Zhang Z., Guo H., Study of Condensation Flow Patterns and Heat Transfer Characteristic on a Horizontal Tube Bundle, November, Conference: ASME 2016 International Engineering Congress and Exposition,(2016), Doi:10.1115/IMECE2016-6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.