Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01243
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202343001243
Published online 06 October 2023
  1. Bussing, T., Pappas G., “Pulse Detonation Engine Theory and Concepts, Developments in High- Speed-Vehicle Propulsion Systems“, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 165, pp. 421-472, (1996). [Google Scholar]
  2. Pandey, K. M. and P. Debnath, “Reviews on recent advances in pulse detonation engines“,Journal of Combustion. Article ID 4193034,(2016). [Google Scholar]
  3. Pinku Debnath, K.M. Pandey, “Effect of operating parameters on application based performance analysis of PDC: A recent review”, Materials Today: Proceedings, ISSN: 2214-7853, Vol: 45, pp. 6702-6707,(2021). [CrossRef] [Google Scholar]
  4. Pinku Debnath and Krishna Murari Pandey, A State of Art Review on Thermodynamics Performance Analysis in Pulse Detonation Combustor, Applications of Calorimetry, Intech open Publications, Book Chapter, (2022). DOI: 10.5772/intechopen.103005 [Google Scholar]
  5. Pinku Debnath, K. M. Pandey, “Performance Investigation on Single Phase Pulse Detonation Engine Using Computational Fluid Dynamics”, Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition, IMECE2013, November 15-21, (2013), SAN DIEGO, CA, USA,IMECE2013-66274 [Google Scholar]
  6. Kawane, K., Shimada, S., Kasahara, J., Matsuo, A. “The influence of heat transfer and friction on the impulse of a detonation tube“, Combustion and Flame, 158(10), pp. 2023-2036, (2011). [CrossRef] [Google Scholar]
  7. Ciccarelli, G., Dubocage, P., “Flame acceleration in fuel-air mixtures at elevated initial temperatures”, 38th AIAA/ASME/SME/SAE/ASEE Joint Propulsion Conference and Exhibit, (2002). [Google Scholar]
  8. Shchelkin, K. I., “Influence of tube roughness on detonation propagation and propagation in gases“, Journal of Experimental Theory and Physics, 10, pp. 823-827, (1940). [Google Scholar]
  9. Philip K. Panicker, Frank K. Lu and Donald R. Wilson “Practical Methods for Reducing the Deflagration- to-Detonation Transition Length for Pulse detonation Engines”, Proceedings of the 9th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (ISAIF9), 8-11 September (2009), Gyeongju, Korea. [Google Scholar]
  10. Rocco Portaro, Jad Sadek, Hoi Dick Ng, “On the application of gas detonation-driven water jet for material surface treatment Process”, Manufacturing Letters, Vol. 21, (2019), pp. 70-74. [CrossRef] [Google Scholar]
  11. Shengxi Jia, Longxi Zheng, Lingyi Wang and Xiqiao Huang, “Structural response and wall thickness design of pulse detonation combustor“, Proc. IMechE Part G: J Aerospace Engineering, Vol. 234, Issue: 9, pp. 1543-1563,(2020). [CrossRef] [Google Scholar]
  12. Oran, E. S., Gamezo, V.N., “Origins of the deflagration to detonation transition in gas phase combustion“, Combustion and Flame, 148(1-2), pp. 4-47, (2007). [CrossRef] [Google Scholar]
  13. El-Asrag H, Menon S., “Large eddy simulation of bluff-body stabilized swirling non-premixed flames“, Proceedings of the Combustion Institute, 31(2), pp. 1747-1754, (2007). [CrossRef] [Google Scholar]
  14. Wilcox, D. C., Turbulence Modeling for CFD. DCW Industries, California, second edition, (1998). [Google Scholar]
  15. Kim, J., Moin P., Moser, R., “Turbulence statistics in fully developed channel flow at low Reynolds number“, Journal of Fluid Mechanics, 177, pp. 133-166, (1987). [NASA ADS] [CrossRef] [Google Scholar]
  16. Molkov V. V, Makarov D. V, “Schneider H. LES modeling of an unconfined large-scale hydrogen-air deflagration“, Journal of Physics D: Applied Physics, 39(20), pp. 4366-76, (2006). [CrossRef] [Google Scholar]
  17. Hawkes E. R., Cant R. S, “Implication of a flame surface density approach to large eddy simulation of premixed turbulent combustion“, Combustion and Flame, 126(3), pp. 1617-29, (2001). [CrossRef] [Google Scholar]
  18. Lee J. H., Knystautas R., Freiman A., “High speed turbulent deflagrations and transition to detonation in H2-air mixtures“, Combustion and Flame, 56(2), pp. 227-39, (1984). [CrossRef] [Google Scholar]
  19. Edwards, D. H., Brown, D.R., Hooper, G., Jones, A.T., “The influence of wall heat transfer on the expansion following a C-J detonation wave“, Journal of Physics D: Applied Physics. 3(3), pp. 365-376, (1970). [CrossRef] [Google Scholar]
  20. Huang, Y., Tang, H., Li, J., Zhang, C., “Studies of DDT enhancement approaches for kerosene- fueled small-scale pulse detonation engines applications“, Shock Waves, 22, pp. 615-625, (2012). [CrossRef] [Google Scholar]
  21. Lee, S. Y., “Deflagration to detonation transition process by turbulence initiation and impulse detonation engines“, Journal of Propulsion and Power, 20(6), pp. 1026-1036, (2004). [CrossRef] [Google Scholar]
  22. Khokhlov A. M., Oran E. S., Thomas G. O., “Numerical simulation of deflagration-to-detonation transition: the role of shock flame interactions in turbulent flame“, Combustion and Flame, 117(1-2), pp. 323-339, (1999). [CrossRef] [Google Scholar]
  23. Vaagsaether, K. V. Knudsen, D. Bjerketvedt, “Simulation of flame acceleration and DDT in H2- air mixture with a flux limiter centered method“, International Journal of Hydrogen Energy, 32(13), pp. 2186-2191, (2007). [CrossRef] [Google Scholar]
  24. Kratzel, T., E. Pantow and H. Eichert, “Modeling of hydrogen combustion: Turbulent flame acceleration and detonation“, International Journal of Hydrogen Energy, 21(5), pp. 407-414, (1996). [CrossRef] [Google Scholar]
  25. Pinku Debnath, K. M. Pandey, “Effect of Blockage Ratio on Detonation Flame Acceleration in Pulse Detonation Combustor Using CFD” Applied Mechanics and Materials, Vol. 656, pp. 64-71, (2014). [Google Scholar]
  26. Debnath P., Pandey K. M “Numerical Investigation of Detonation Combustion Wave in Pulse Detonation Combustor with Ejector“, Journal of Applied Fluid Mechanics, 10(2), pp. 725-733, (2017). [CrossRef] [Google Scholar]
  27. P. Debnath, and K. M. Pandey, “Numerical analysis of detonation combustion wave in pulse detonation combustor with modified ejector with gaseous and liquid fuel mixture“, Journal of Thermal Analysis and Calorimetry, Vol. 145, pp. 3243-3254, (2021). [CrossRef] [Google Scholar]
  28. Wei Wang, Hua Qiu, Wei Fan, Cha Xiong, “Experimantal study on DDT Characteristics in Spiral Configuration Pulse Detonation Engines“, International Journal of Turbo & Jet-Engines, Vol. 30, Issue 3, pp. 261-270, (2013). [Google Scholar]
  29. Yan, Y., Fan, W., Yang, M., “Preliminary Experimental Investigation on Detonation Initiation in the Ejector of a Pulse Detonation Rocket Engine“, International Journal of Turbo & Jet-Engines, 29(4), pp. 299-307, (2012). [Google Scholar]
  30. Asato, K., Miyasaka, T., Y. Watanabe, K. Tanabashi, “Combined effects of vortex flow and the Shchelkin spiral dimensions on characteristics of deflagration-to-detonation transition”, Shock Waves, 23, pp. 325-335, (2013). [CrossRef] [Google Scholar]
  31. New, T., K., Panicker, P. K., F. K. Lu, Tsai, H. M., “Experimental investigations on DDT enhancements by Shchelkin spirals in a PDE”, AIAA Paper 2006-552, (2006). [Google Scholar]
  32. P. Debnath and K. M. Pandey, “Computational Study of Deflagration to Detonation Transition in Pulse Detonation Engine Using Shchelkin Spiral”, Applied Mechanics and Materials, Vol. 772, pp. 136-140, 2015, doi:10.4028/ www.scientific.net/AMM.772.136 [CrossRef] [Google Scholar]
  33. Pinku Debnath & K. M. Pandey, “Exergetic Efficiency Analysis of Hydrogen-Air Detonation in Pulse Detonation Combustor Using Computational Fluid Dynamics”, International Journal of Spray and Combustion Dynamics, ISSN 1756-8277, Vol. 9, Issue 1, pp. 44-54. [Google Scholar]
  34. Gamezo, V. N., Ogawa, T., Oran, E. S., “Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing“, Combustion and Flame, 155(1-2), pp. 302-315, (2008). [CrossRef] [Google Scholar]
  35. Pinku Debnath and K.M. Pandey, “Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle“, Advances in Aircraft and Spacecraft Science, Vol. 7, No. 3,pp. 187-202, (2020). [Google Scholar]
  36. K. Asato, T. Miyasaka, Y. Watanabe, K. Tanabashi, “Combined effects of vortex flow and the Shchelkin spiral dimensions on characteristics of deflagration-to-detonation transition“, Shock Waves, vol. 23, pp. 325-335, (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.